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Motivation

® Consider that m terminals communicate through a network
performing randomized linear network coding

® (Goal: Creating a common secret key <K> amongst them which is
concealed from a passive eavesdropper Eve

® This can be done using public-key cryptography:
® Based on some unproven hardness problems

® The computational power of Eve is limited

° Propose a
scheme that guarantees @ @
information theoretical secrecy @

@)
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Problem Statement

® (Goal:m trusted (authenticated) terminals aim to create a common
secret key which is secret from a passive eavesdropper Eve

® There is a broadcast channel from one of the terminals (Alice)
to the others including Eve

® Assume the availability of a costless public discussion channel

® Terminals can interact in many rounds

Alice ‘ (K) (K) ‘ Bob
< \ > Public Channel
O

) @

Calvin Eve

® |n general, the exact characterization of the secrecy rate is open

4
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Problem Statement

® Assumptions:
® Broadcast channel is a nhon-coherent network coding channel:

|. The non-coherent NC is modeled by a matrix channel

with over the transfer matrix:
X,-[t| = H,[t| Xalt], re{l,...,m,E}
2. The are matrices of size na X L over F,
3. The are matrices of size n, x L over I,

® The channels from Alice to the rest of terminal are
, hamely:

m

le--.XmXE|XA (3717 v ooy Imyy xE\CCA) — PXE|XA (IE\SE’A) H PX,L-|XA (il%\xA)
i=1

® W/e study the asymptotic behavior of the secrecy capacity, by
stating and as the field size q increases
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Related Work

® Multi-terminal secrecy:

® Wiretap channel (Wyner 1975, Csiszar and Korner 1978)

® Observation (Maurer 1993): Feedback can increase the secret
key generation rate

® Multi-terminal Secrecy Problem without Eve’s side information
(Csiszar and Narayan 2008), completely solved

® Multi-terminal Secrecy Problem with Eve’s side information
(Gohari and Anantharam 2010), open even for two terminals!

® Secure Network Coding:

® CaiandYeung 2002, Feldman et. al. 2004, Rouayheb et. al. 2007
® Jaggi et.al. 2008, Silva et. al. 201 |
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Upper Bound: Independent Broadcast Channel

Theorem: By applying Csiszar and Narayan (2008) result (and by
adding a dummy terminal) for the upper bound we can write:

C, < i H(Xo.m1|XE) \gH(Xp|Xge, X
<R | XomXE) = 2 AH(Xp o X2)

where A([0: m]) is the set of all collections A = {\g: BC[0:m], B# 0}
of weights 0 < Ap <1 satisfying " Ip=1
BC[0:m], i€ B

Theorem: For independent broadcast channel, we can show that
the above bound simplifies to:

Cs <max min I(Xg; X;|XEg)

Px, i€[l:m]

< min max I (Xo; X;|XE)
ZE[l m] PXO

7
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Upper Bound

® T[heorem:The secret key generation capacity is asymptotically
upper bounded by:

Cs < min maxI(X4;X;|XEg)

1€[l:m] Px ,

= II[lliIl] [(min[nA,ni +ng| —ng)(L —minna,n; + nE])} log g
e|lm

® Sketch of the proof:
® Coding over subspace (row span of X 4) is a maximizer

® Considering the input distribution which is uniform over
subspaces of the same dimension is sufficient

® Finally, we have to solve a convex optimization problem
on O(min[n 4, L)) variables, instead of ¢"4"
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Lower Bound

® T[heorem:The secret key sharing rate given by the solution of the
following convex optimization problem can be asymptotically
achieved:

maximize [min,,ng[l:m] > T5r 95] (L —na)loggq
S.t. 07 >0, VJCI[l:m], J#0,

07+ +0g <dim Uy, +---+Ug, +11g) — dim(llg)
Vi, VT, ... Tk 0F# T C[1:m], J; #J;if i # j

where for every non-empty J C [1 : m], Uy is chosen uniformly at
random from II; with dimension:

dim(U7) = dim(Il7) — dim (Z ;7 + HEJ)
eJe

9
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Lower Bound: Sketch of the Proof

Suppose that Alice broadcast X 4[t] at time t of the following form:
Xaltl= [ Inaxna M[t] |

M([t] € Fp4*E="4) s a uniformly at random distributed matrix

Legitimate terminals learn the channel and reveal H,[t] publicly

=> Alice can reconstruct subspaces II. = (X,.) for all of the
legitimate terminals

Subspaces II,. are chosen independently and uniformly at random
from HA => dlm(Hr) — Ny WhP
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Lower Bound: Sketch of the Proof

Suppose that Alice broadcast X 4[t] at time t of the following form:
Xaltl= [ Inaxna M[t] |

M([t] € Fp4*E="4) s a uniformly at random distributed matrix

Legitimate terminals learn the channel and reveal H,[t] publicly

=> Alice can reconstruct subspaces II. = (X,.) for all of the
legitimate terminals

Subspaces II,. are chosen independently and uniformly at random

from 114 => dim(IL.) = n, w.h.p. Upc
|
For each non-empty 7 C [1 : m] define: I3 Tl
a Up—
e (S ) OLQ
iege : Us
114 S
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Lower Bound: Sketch of the Proof

From definition of “\s” => dimension of Uy is equal to:
iege

Assuming q is large,Alice can calculate dim(Us) w.h.p. even without
knowing I1g

Observation: If Alice randomly chooses a subspace of dimension dim(U )
from I ; it satisfies w.h.p.:

Uy 117\, < > g+ HEJ)

ieJe
To each subset 0§ # 7 C [1:m] we assign a parameter 6, > 0 s.t.

07, +-+ 0z <dimUgy, +---+ Uy, +11g) — dim(Ilg)

for every k and any different selection of subsets: 71, ..., Jk

12
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[*] Khojastepour et. al., Multicast achievable rate

Lower Bound: Sketch of the Proof

Lemma™: There exist subspaces U’ C U; such that dim(U’) = 07
and all U’; and IIg are orthogonal subspaces w.h.p., namely:

dim(Ilg + ) U%) =dim(Ig) + » 67,

Lemma:Alice can use a basis of U’; to share a secret key K7 with all
terminals in J.This key is secure from Eve and all terminals in J°

To this end: Alice sends publicly a set of coefficients for each
terminal in J => each of them reconstruct U,

Even having access to the coefficients,
Eve cannot recover any info about K

region of deterministic broadcast channel, 201 I.

|3

Saturday, June 30, 12



Lower Bound: Sketch of the Proof
Reconciliation Phase

® Using K, Alice can send a message of size 0;(L — n,4)logq secretly
to terminals in J over the public channel

® Now,Alice can use an MDS code to achieve the secrecy rate:

0. (L —nal
ré?f?n]% 7| (L —n4)logq

Alice

Saturday, June 30, 12



Lower Bound

® T[heorem:The secret key sharing rate given by the solution of the
following convex optimization problem can be asymptotically
achieved:

maximize [min,,ng[l:m] > T5r 95] (L —na)loggq
S.t. 07 >0, VJCI[l:m], J#0,

07+ +0g <dim Uy, +---+Ug, +11g) — dim(llg)
Vi, VT, ... Tk 0F# T C[1:m], J; #J;if i # j

where for every non-empty J C [1 : m], Uy is chosen uniformly at
random from II; with dimension:

dim(U7) = dim(Il7) — dim (Z ;7 + HEJ)
eJe

|5
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Example: 3 Terminals Problem

® Three terminals problem, n4 =60 and ng = n¢ = 15
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Conclusion

We have considered the problem of secret key sharing among m
terminals in the presence of a passive eavesdropper

® TJerminals communicate through a network performing
randomize network coding => a non-coherent scenario

® TJerminals can discuss over a public channel
We provide asymptotic upper and lower bounds for large field size

For some channel parameters: the upper and lower bounds match
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Thank You!




