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Motivation

• Consider that m terminals communicate through a network 
performing randomized linear network coding

• Goal: Creating a common secret key <K> amongst them which is 
concealed from a passive eavesdropper Eve

• This can be done using public-key cryptography:

• Based on some unproven hardness problems

• The computational power of Eve is limited

• Alternative approach: Propose a                                         
scheme that guarantees                                                
information theoretical secrecy
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Problem Statement

• Goal: m trusted (authenticated) terminals aim to create a common 
secret key which is secret from a passive eavesdropper Eve

• There is a broadcast channel from one of the terminals (Alice) 
to the others including Eve

• Assume the availability of a costless public discussion channel

• Terminals can interact in many rounds

• In general, the exact characterization of the secrecy rate is open
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Problem Statement

• Assumptions:

• Broadcast channel is a non-coherent network coding channel:

1. The non-coherent NC is modeled by a matrix channel 
with uniform distribution over the transfer matrix:

2. The input symbols are matrices of size            over  

3. The output symbols are matrices of size            over  

• The channels from Alice to the rest of terminal are 
independent, namely:

• We study the asymptotic behavior of the secrecy capacity, by 
stating upper and lower bounds as the field size q increases
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Related Work

• Multi-terminal secrecy:

• Wiretap channel (Wyner 1975, Csiszar and Korner 1978)

• Observation (Maurer 1993): Feedback can increase the secret 
key generation rate

• Multi-terminal Secrecy Problem without Eve’s side information 
(Csiszar and Narayan 2008), completely solved

• Multi-terminal Secrecy Problem with Eve’s side information 
(Gohari and Anantharam 2010), open even for two terminals!

• Secure Network Coding:

• Cai and Yeung 2002, Feldman et. al. 2004, Rouayheb et. al. 2007

• Jaggi et. al. 2008, Silva et. al. 2011
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Upper Bound: Independent Broadcast Channel

• Theorem: By applying Csiszar and Narayan (2008) result (and by 
adding a dummy terminal) for the upper bound we can write:

where               is the set of all collections                                         
of weights                 satisfying  

• Theorem: For independent broadcast channel, we can show that 
the above bound simplifies to:
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Upper Bound

• Theorem: The secret key generation capacity is asymptotically 
upper bounded by:

• Sketch of the proof: 

• Coding over subspace (row span of      ) is a maximizer

• Considering the input distribution which is uniform over 
subspaces of the same dimension is sufficient

• Finally, we have to solve a convex optimization problem      
on                     variables, instead of   

8

Cs  min

i2[1:m]
max

PXA

I(XA;Xi|XE)

= min

i2[1:m]

h
(min[nA, ni + nE ]� nE)(L�min[nA, ni + nE ])

i
log q

XA

O(min[nA, L]) qnAL

Saturday, June 30, 12



Lower Bound

• Theorem: The secret key sharing rate given by the solution of the 
following convex optimization problem can be asymptotically 
achieved:

where for every non-empty                ,       is chosen uniformly at 
random from       with dimension:
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Lower Bound: Sketch of the Proof

• Suppose that Alice broadcast         at time t of the following form:

•                          is a uniformly at random distributed matrix

• Legitimate terminals learn the channel and reveal        publicly

• => Alice can reconstruct subspaces               for all of the 
legitimate terminals

• Subspaces     are chosen independently and uniformly at random 
from       =>                     w.h.p.
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Lower Bound: Sketch of the Proof

• Suppose that Alice broadcast         at time t of the following form:

•                          is a uniformly at random distributed matrix

• Legitimate terminals learn the channel and reveal        publicly

• => Alice can reconstruct subspaces               for all of the 
legitimate terminals

• Subspaces     are chosen independently and uniformly at random 
from       =>                     w.h.p.

• For each non-empty                 define:
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Lower Bound: Sketch of the Proof

• From definition of       => dimension of       is equal to:

• Assuming q is large, Alice can calculate              w.h.p. even without 
knowing  

• Observation: If Alice randomly chooses a subspace of dimension              
from      it satisfies w.h.p.: 

• To each subset                       we assign a parameter           s.t.

for every k and any different selection of subsets:
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Lower Bound: Sketch of the Proof

• Lemma*: There exist subspaces               such that                     
and all      and      are orthogonal subspaces w.h.p., namely:

• Lemma: Alice can use a basis of      to share a secret key      with all 
terminals in    . This key is secure from Eve and all terminals in 

• To this end: Alice sends publicly a set of coefficients for each 
terminal in     => each of them reconstruct   

• Even having access to the coefficients,                                               
Eve cannot recover any info about
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Lower Bound: Sketch of the Proof
Reconciliation Phase

• Using       Alice can send a message of size                        secretly 
to terminals in    over the public channel

• Now, Alice can use an MDS code to achieve the secrecy rate:
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Lower Bound

• Theorem: The secret key sharing rate given by the solution of the 
following convex optimization problem can be asymptotically 
achieved:

where for every non-empty                ,       is chosen uniformly at 
random from       with dimension:
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Example: 3 Terminals Problem

• Three terminals problem,              and 

• Three terminals problem,              and 
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Conclusion

• We have considered the problem of secret key sharing among m 
terminals in the presence of a passive eavesdropper 

• Terminals communicate through a network performing 
randomize network coding => a non-coherent scenario

• Terminals can discuss over a public channel

• We provide asymptotic upper and lower bounds for large field size

• For some channel parameters: the upper and lower bounds match
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Thank You!

18

Saturday, June 30, 12


