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Introduction
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Randomized Network Coding
• Nodes linearly and uniformly combine the incoming packets.

• => Sources and destinations are oblivious to the network 
operation (a non-coherent transmission).

• The standard approach is to append coding vectors to each 
packet to keep track of the linear operations performed by 
the network.

• =>There is a loss of information rate due to coding 
vector overhead.

S

D

D
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Operator Channel - Subspace Coding
Kotter and Kschischang (2008)

• Observation: The linear network coding is vector space 
preserving.

• => Information transmission is modeled by the injection 
of a basis for a vector space       into the network and the 
collection of a basis for a vector space       by the receiver.

• Network is modeled by the operator channel:

• KK’08 focused on code construction in              which is a 
combinatorial problem.

• They only focused on subspace codes with block length one.
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Non-coherent Network Coding
• We may study this problem from information theory point of 

view by proposing a probabilistic model for the channel.

• Q 1:  What is the maximum achievable rate in such a 
network with non-coherent assumption when we can use 
the network many time?

• Q 2:  What is the optimal coding scheme to achieve the 
capacity?

• Q 3:  How much is the rate loss of using coding vectors 
compared to the optimal scheme?
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Problem Setup and Model
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Assumptions
• We assume time is slotted (or we have rounds).

• In each time-slot, the source sends m packets denoted by 
rows of X, (X is an           matrix over     ).

• Receiver observes n packets denoted by rows of Y, (an       
matrix over     ).

• Transfer function is unknown to both Tx and Rx, (similar to 
non-coherent MIMO channel).

• Nodes perform uniform at random randomized network 
coding over     .

Y =




− Y1 −

...
− Yn −





n×T

X =




− X1 −

...
− Xm −





m×T

m× T

n× T

Fq

Fq

Fq
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Channel Model
• The channel model is a block time-varying channel.

• For each time-slot we have:

• Matrix        is assumed to be uniformly distributed over all 
possible matrices and independent over different blocks.

• The packet length    can be interpreted as the coherence 
time of the channel, during which the transfer matrix remains 
constant.

Yn×T [t] = Hn×m[t]Xm×T [t]

Y =




− Y1 −

...
− Yn −





n×T

X =




− X1 −

...
− Xm −





m×T

Network

H[t]

T

H[t]
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Notion of Capacity
• Considering a coding scheme over multiple blocks, the 

problem becomes an information theoretical problem with 
channel capacity:

C = max
PX

I(X;Y )

A codeword is a sequence of matrices

X ∈ Fm×T
q , Y ∈ Fn×T

q
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Results
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Coding over Subspaces is Optimal!
• For the channel transition probability we can show:

• Conclusions:

• Coding over subspaces is optimal.

• Because of the symmetry, the optimal input distribution is 
uniform over all subspaces having the same dimension.

• Question: What is the optimal input distribution over 
subspaces with different dimensions?

P[Y = y|X = x] =

�
q−n dim(�x�) �y� � �x�
0 otherwise
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Illustration of Main Result

• The channel is:

• There are different regimes, based on relative values of m, n, 
and T.

• Example:  Active subspace dimensions for m = 4, n = 3:

Yn×T = Hn×mXm×T

1 3 42 1 3 42 1 3 42
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Main Result
• Theorem:

• There exists finite     such that for           the optimal 
input distribution is non-zero only for the matrices whose 
rank belongs to the active set:

• The total probability allocated to transmitting matrices of 
rank   equals:

A =
�
min[(T − n)+,m, n, T ], . . . ,min[m,n, T ]

�

α∗
i � P[rank(X) = i] = 2−Cqi(T−i)[1 + o(1)], ∀i ∈ A

q0 q > q0

i
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Main Result
• Theorem:

• The capacity is given by:

• where 

• Numerical calculations show fast convergence of capacity to 
above result even for small   , (example:                         ):

C = i∗(T − i∗) log2 q + o(1)

i∗ = min [m,n, �T/2�]

2 4 6 8 10
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20

30

40

log2q

C
/lo
g 2
q

T=13

T=7

T=10

q m = 11, n = 7
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Subspace Coding vs. Coding Vectors

• Information rate loss from using coding vectors when          :

• So in terms of transmission rate, “coding vector” scheme 
performs well enough if    is not small.

• KK’08  also made a similar observation by proposing an 
algebraic code construction for fixed dimensional subspace 
code. However, KK’08 only consider the subspace codes of 
block length one.

C −Rcv

T ≤ 2m T > 2m

o(1) o(1) = (i∗ − 1)(T − i
∗)
log2 q

q
+O(q−1)

q

m = n
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Sketch of the Proof
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Proof Sketch
• The matrix channel         with capacity              is given by:

• The subspace channel        with capacity     is defined as:

• Lemma:  The channels         and        are equivalent in terms 
of evaluating the mutual information between the input and 
output.  As a result,               .

chm

chs

PΠY |ΠX
(πy|πx) �

�
ψ(T, n,πy)q−n dim(πx) πy � πx

0 otherwise

PY |X(y|x) =
�

q−n dim(�x�) �y� � �x�
0 otherwise

chm

Cm = Cs

chs

Cm � C

Cs
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Proof Sketch
• Lemma:  The input distribution that maximizes for                is 

the one which is uniform over all subspaces having the same 
dimension. So

where                     and  

• Now, we have to maximize the mutual information             
over different choices of 

I(ΠX ;ΠY )

P[�X� = πx] = P[ΠX = πx] = αr ×
�
T

r

�−1

q

r = dim(πx) αr = P[dim(ΠX) = r]

I(ΠX ;ΠY )

αi, i = 0, . . . ,min(m,T ).
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Proof Sketch
•                 is a concave function of     , so we can apply Kuhn-

Tucker theorem.

• The optimal values 	
  should satisfy:

for                         where 

• After some manipulations and approximations we can write 
the Kuhn-Tucker conditions as a linear system:

I(ΠX ;ΠY ) αi

α∗
i






∂I(ΠX ;ΠY )
∂αk

���
α∗

i

= λ ∀k : α∗
k > 0

∂I(ΠX ;ΠY )
∂αk

���
α∗

i

≤ λ ∀k : α∗
k = 0

λ = Cs − log2 e
min(m,T )�

i=0

α∗
i = 1.

Aα∗ � 2−Cs+o(1)b
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Proof Sketch
• First case: δ � min(m,T ) ≤ n

A =





1 q−n · · · q−(δ−1)n q−δn

0 q−(n−1) · · · q−(δ−1)(n−1) q−δ(n−1)

0 0 · · · q−(δ−1)(n−2) q−δ(n−2)

...
...

. . .
...

...
0 0 · · · q−(δ−1)(n−δ+1) q−δ(n−δ+1)

0 0 · · · 0 q−δ(n−δ)





b =
�
1 q(T−n) · · · qδ(T−n)

�T

α∗
i =






qi(T−i)2−Cs+o(1) : κ ≤ i ≤ δ

0 : 0 ≤ i < κ
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Extension for Multiple Sources
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Motivation
• Consider sensor network applications where multiple nodes 

want to report their data to one or multiple access points.

A
S

S

S

Xi ∈ Fmi×T
q , Hi ∈ Fn×mi

q , Y ∈ Fn×T
q

Y [t] =
s�

i=1

Hi[t]Xi[t] =
�
H1[t] | · · · | Hs[t]

�



X1[t]
...

Xs[t]





= HMAC[t]XMAC[t]
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• We only consider the two sources problem. However, the 
same technique can be extended to more than two sources.

• We only characterize the asymptotic behavior of the rate 
region when    is large and

• The channel transition probability is given by:

• Again coding over subspaces is an optimal scheme.

T ≥ 2(m1 +m2)q

PY |X1X2
(y|x1, x2) =

�
q−n dim(�x1�+�x2�) �y� � �x1�+ �x2�
0 otherwise
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Main Result
• Theorem:

For                        , the asymptotic (in the field size   ) rate 
region of the MAC                is given by:

T ≥ 2(m1 +m2) q
chm−MAC

R∗ � convex hull
�

(d1,d2)∈D∗

R(d1, d2)

R(d1, d2) � {(R1, R2) : Ri ≤ di(T − d1 − d2) log2 q, i = 1, 2}

D∗ � {(d1, d2) : 0 ≤ di ≤ min[n,mi], i = 1, 2,

0 ≤ d1 + d2 ≤ min[n,m1 +m2]}
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Illustration of the Result
• Example:

•                because of the cooperative upper bound.

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

R1/log2(q)

R 2/lo
g 2(q

)

(2,3)

(3,3)

(4,2)

(4,1)

(4,0)

(d1,d2)= (1,3)
(0,3)

m1 = 4
m2 = 3
n = 6
T = 14

D∗ = {(0, 3), (1, 3), (2, 3), (3, 3), (4, 2), (4, 1), (4, 0)}

(4, 3) /∈ D∗
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Sketch of the Proof
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Achievability Scheme 
• For given	
                  , define the following subspace 

codebooks:

• The receiver receives:

• Since	
                 , the matrix              is full-rank with high 
probability, and therefore the decoder is able to decode   
and     .

• The remaining non-integer points in the rate region can be 
achieved using time-sharing.

�C1 �
�
�X1� : X1 =

�
Id1×d1 0d1×d2 U1

0(m1−d1)×d1
0(m1−d1)×d2

0(m1−d1)×(T−d1−d2)

�
,U1 ∈ Fd1×(T−d1−d2)

q

�

(d1, d2) ∈ D∗

�C2 �
�
�X2� : X2 =

�
0d2×d1 Id2×d2 U2

0(m2−d2)×d1
0(m2−d2)×d2

0(m2−d2)×(T−d1−d2)

�
,U2 ∈ Fd2×(T−d1−d2)

q

�

Y = H1X1 +H2X2 =
�
Ĥ1 Ĥ2 Ĥ1U1 + Ĥ2U2

�

d1 + d2 ≤ n [Ĥ1 Ĥ2]

U1

U2
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Upper Bound
• Finding the upper bound goes along the following steps:

• We use two different upper bounds:

• A cooperative upper bound 

• A combinatorial coloring upper bound 

• Find                   and show that 

Rcoop

Rcol

Rcol ∩Rcoop Rcol ∩Rcoop ⊆ R∗

R1

R2

Cooperative bound

Coloring bound

R∗

�
R1 +R2 ≤ k(T − k) log2 q

k = min[m1 +m2, n]
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Coloring Bound
• For channel transition probability we have:

• So, the receiver cannot distinguish between:

• What is the maximum number of distinguishable subspace 
sequences which can be conveyed through the channel?

PΠY |ΠX1ΠX2
= PΠY |ΠX1+ΠX2

π1 π2

π�
2π�

1

π1 + π2 = π�
1 + π�

2

π1 + π2 and π�
1 + π�

2
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Coloring Bound
• From the proof of the outer bound for MAC we have:

R1 ≤ 1

N
I(ΠN

X1
;ΠN

Y |ΠN
X2

) ≤ 1

N

N�

t=1

I(ΠX1t;ΠY t|ΠX2t)

R2 ≤ 1

N
I(ΠN

X2
;ΠN

Y |ΠN
X1

) ≤ 1

N

N�

t=1

I(ΠX2t;ΠY t|ΠX1t)

R1 +R2 ≤ 1

N
I(ΠN

X1
,ΠN

X2
;ΠN

Y ) ≤ 1

N

N�

t=1

I(ΠX1t,ΠX2t;ΠY t)

Channel

Π1[1] Π1[2] Π1[t] Π1[N ]

Π2[N ]Π2[1] Π2[2] Π2[t]

ΠY [1] ΠY [N ]

time t
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Coloring Bound
•      denotes the projection of the codebook of user i to its 

t’th element.

• At time t we have:

• Theorem:  There exists integer numbers                      such 
that

Ci,t

π1

πc1

π�
c2π�

1

πi

π�
j

πi + π�
jC1,t

C2,t

0 ≤ δi(t) ≤ mi

ci,t = |Ci,t|
.
≤ qδi(t)[T−δ1(t)−δ2(t)]
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Compressed Network Coding 
Vectors
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Motivation
• Motivation: Combining network coding with data collecting 

protocols in sensor networks where N sources send 
information to an access point.

A
S

S

S

S
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Motivation
• In the previous approaches: an underlying assumption is that, 

all sources packets may get combined in the network.

• Compressed coding vectors: assume that each coded packets 
contains a linear combination of at most M out the N source 
packets.

• => This allows us to use coding vectors whose length 
grows sub-linearly with N. 

• => more efficient network communication.

A
S

S

S

S
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Compressed Coding Vectors
• The sources packets are of the form:

• A packet in the network is represented as: 

• Consider a linear code                           with parity check 
matrix       where  

• As coding vector,  assign to source packet     the ith column 
of the matrix      :

• => compressed coding vectors:

• Because                   so if                then 

• For each packet, recovering       from       reduces to a 
decoding problem.

p � [pC | pI ]

[ei | xi]

C = [N,N − r, d]q
d = min(2M + 1, N + 1)HC

xi

HC hi = ei ·HT
C

p̂C = pC ·HT
C

wt(pC) ≤ M pC
1 �= pC

2 p̂C
1 �= p̂C

2

pC p̂C
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Bounds on the Length of CCV
• From the Gilbert-Varshamov bound we have an upper bound 

for the length of compressed coding vectors:

• From the Sphere packing bound we have a lower bound on 
the length of compressed coding vectors:

• For fixed M and growing N we have:

r ≥ NHq

�
M

N

�
− 1

2
logq

�
8M

�
1− M

N

��

r ≤ NHq

�
2M

N

�

M logq N +O(1) ≤ r ≤ 2M logq N +O(1)
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Bounds on the Length of CCV
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m=3
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Conclusions
• We proposed a matrix channel model for non-coherent 

randomized network coding and characterized its capacity.

• Using coding vectors is not far from optimal scheme if the 
field size is large.

• Motivated by sensor network application, we also looked at 
the multi-source non-coherent network coding problem and 
characterize the asymptotic (in filed size) rate region.

• In terms of rate improvement, subspace coding does not 
offer a significant difference. 
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Thank you!
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