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Abstract

The demand for higher throughput and better efficiency are two important
challenges for future communication networks. During the past decades, a lot
of research studies have been devoted to investigating and proposing near op-
timal and efficient schemes and algorithms for point-to-point communication.
However, in communication networks, especially in wireless systems, we require
more intricate algorithms and coding schemes that are optimized for networks
rather than for point-to-point communications. In recent years, the network
coding paradigm has opened new opportunities for network information flow
algorithms.

In the first part of the thesis, we consider a non-coherent transmission
scenario in a network performing randomized linear network coding. Our main
goal is to find the optimal performance in terms of communication rate in such
a transmission scenario and to discover the optimal coding scheme to achieve
it. It is observed by Koetter et al. [1] that because the network performs an
unknown linear transformation, coding over subspaces spanned by the source
packets could be a reasonable coding scheme. In order to make this claim
information-theoretically justified, we study a multiplicative matrix channel
over a finite field with a uniform and independent distribution over the transfer
matrix. The capacity for this unicast communication scenario is characterized
and it is shown that coding over subspaces is indeed optimal. A similar result
is also derived for the two users multiple access problem in such a non-coherent
network coding scenario. We then generalize this model by proposing a more
universal scenario which is based on an arbitrarily varying channel approach.
This result shows the optimality of subspace coding for a wider class of matrix
channels, i.e., the channels where only the rank distribution of the transfer
matrix is known. Moreover, the above results show that the overhead of schemes
based on coding vectors is negligible for many practical situations, i.e., the
situations where the rank of the transfer matrix is concentrated around some
integer number.

Next, we observe that in a network performing randomized linear network
coding, the coding vectors carry topological and state-dependent information
about the network. Considering the subspaces spanned by the coding vectors at
the relay nodes of the network, we investigate the properties of these subspaces
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and leverage them for some practical problems including network tomography,
network management, and Byzantine attack detection.

In the last part of the thesis, we consider the problem of secret key sharing
among multiple nodes in a network, in the presence of a passive eavesdropper.
We assume that there exists a broadcast channel from one of the trusted nodes
to the rest of them (including the eavesdropper). Moreover, we assume that
the trusted entities can discuss over a public channel overheard by everyone.
The secrecy key generation capacity for this problem is still unknown (in gen-
eral, there exist only some upper and lower bounds). For the erasure broadcast
channel as well as the linear deterministic wireless broadcast channel, we pro-
pose optimal and efficient schemes that enable arbitrary number of legitimate
entities to share a secret key among themselves. By extending these results, we
propose achievability schemes for the non-coherent network coding broadcast
channel and the state-dependent Gaussian wireless broadcast channel.

Keywords: network coding, randomized linear network coding, matrix chan-
nel, non-coherent transmission, subspace coding, channel capacity, arbitrarily
varying channel, topology inference, network management, information theo-
retical secrecy, multi-terminal secret sharing



Riassunto

Migliori velocità di trasmissione ed efficienza sono due importanti sfide per
le future reti di comunicazione. Durante gli ultime decenni un importante nu-
mero di ricerche è stato dedicato allo studio di codici ed algoritmi per la co-
municazione punto-punto. Queste ricerche hanno permesso di trovare schemi
efficienti e quasi ottimali, tuttavia nel caso delle reti di comunicazione, in par-
ticolare quelle senza fili, questi schemi non sono sufficienti. Negli ultimi anni
la tecnica della codifica di rete ha aperto una nuova via per lo sviluppo di
algoritmi di flusso dell’informazione di rete più performanti.

La prima parte di questa tesi studia la trasmissione non coerente in reti
che effettuano codifica di rete lineare casualizzata. Il principale scopo di questa
parte è trovare la velocità di trasmissione ottimale di questo scenario e di
trovare un codice che la raggiunga. Koetter et al. in [1] osservano che, visto
che in questo scenario la trasformazione lineare effettua dalla rete non è conosci-
uta, la codifica usando i sottospazi generati dai pacchetti inviati dalla sorgente
potrebbe essere un metodo promettente. Allo scopo di giustificare questa os-
servazione in questa parte della tesi si studia un canale caratterizzato da una
matrice moltiplicativa su un campo finito scelta indipendentemente e uniforme-
mente dall’insieme delle matrici possibili: se ne analizza la capacità e si prova
che la codifica basata sui sottospazi è effettivamente ottimale. Successivamente
un risultato simile è ricavato per il caso dell’accesso multiplo di due utenti
alla stessa rete non coerente. Infine viene studiato un modello generalizzato
di canale basato sull’approccio dei canali con cambiamenti arbitrari. Questo
risultato mostra l’ottimalità della codifica basata sui sottospazi per una più
ampia classe di matrici di canale, ovvero dei canali di cui si conosce solo la dis-
tribuzione del rango della matrice di trasferimento. Il risultato inoltre mostra
che l’informazione di servizio dei codici basati su vettori di codifica è in pratica
irrilevante se il rango della matrice di trasferimento è concentrata attorno ad
un numero intero.

La seconda parte della tesi si basa sull’osservazione che in un a rete che ef-
fettua codifica lineare casualizzata i vettori di codifica contengono informazione
sullo stato e sulla topologia della rete. In questa parte si investigano le pro-
prietà dei sottospazi generati dai vettori di codifica ricevuti dai nodi interni alla
rete e le si sfruttano per proporre soluzioni ad alcuni problemi pratici come la
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tomografia di rete, la gestione di rete e l’individuazione di attacchi bizantini.
L’ultima parte della tesi studia il problema della condivisione di una chiave

segreta in un gruppo di nodi in presenza di un aggressore capace di intercettare
le comunicazioni. In questa parte si assume che esista un canale broadcast da
uno dei nodi fidati verso tutti i nodi della rete, compreso l’aggressore e si
assume che i nodi della rete possono comunicare attraverso un canale pubblico.
La capacità di generazione di una chiave privata in questo scenario è tuttora
sconosciuta (sono conosciute solo maggioranti e minoranti). In questa parte
della tesi si presentano degli schemi efficienti ed ottimali che permettono ad un
numero arbitrario di nodi di condividere una chiave segreta quando il canale
broadcast è un canale con cancellazione. Inoltre, estendendo questi risultati,
propone uno schema ottimale per un canale broadcast non coerente e per il
canale broadcast senza fili gaussiano.

Parole Chiave: codifica di rete, matrice di canale, comunicazione non co-
erente, codifica basata su sottospazi, canale con cambiamenti arbitrari, tomo-
grafia di rete, gestione di rete, crittografia basata sulla teoria dell’informazione,
condivisione di segreti multi-terminale
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“You are at the wheel of your

car, waiting at a traffic light, you

take the book out of the bag, rip

off the transparent wrapping,

start reading the first lines. A

storm of honking breaks over

you; the light is green, you’re

blocking traffic.”

- Italo Calvino

Introduction 1
Communication networks have had a huge impact on the way we are living.

With the advent of new technologies and applications, the request for “being
connected” keeps increasing dramatically. This implies an increasing demand
for higher throughput and more efficient use of communication networks. For
example, according to recent network measurements, the IP traffic over the
Internet doubles every two years [2, 3]. As another example, Cisco Visual Net-
working Index Forecast Project [2] predicts a growth of 18-fold for the global
mobile Internet data traffic from 2011 to 2016.

Although today we have a good understanding of how to communicate effi-
ciently on point-to-point links, this is not the case for network communications.
Most of the today communication techniques are designed to optimize the per-
formance of point-to-point links. As communication networks get more and
more complex, we require more elaborate algorithms and coding schemes that
are designed and optimized from a network point of view. One of the main ob-
jective of the network information theory is to understand how multiple users
can share a heterogeneous network efficiently, to characterize the maximum
transmission rates, and to explore schemes that can achieve these rates. In
this regard, a complete theory of network information would have tremendous
impact on design of next generation communication networks. Although we
are seemingly far from a complete network information theory, we still need to
rethink about our networks’ design methodologies.

Network coding (NC) offers a new paradigm for operation of communica-
tion networks. This opens new opportunities for network information flow al-
gorithms by changing the perspective we had on how to treat the information
bits. In nowadays communication networks, the information bits are treated
like commodities. There exist routing algorithms that route the information
bits from sources to destinations independently from each other. However, NC

1



2 Introduction

provides this insight that by combining the information bits in the network
(i.e., to code them inside the network), in many practical scenarios, we would
gain higher transmission rates than when no coding is allowed.

By enabling the relay nodes in a network to code the information, many new
questions arise. As a consequence, this area of research has attracted a lot of
attention during the past ten years. Some of the main issues in implementing
coding in a network are: (i) how to synchronize the node operations in the
network, (ii) how the nodes should combine the information they have received,
and (iii) how the above tasks can be done using simple operations and in efficient
ways.

In large and complex networks, the packets are subjected to random de-
lays, synchronization errors, and they often follow different routes. Hence, it
is difficult to implement a centralized algorithm to perform NC. The same
difficulties exist for a centralized algorithm to find the network code, i.e., to
find the operation of each node in the network. In contrast, randomized linear
NC [4] has been proposed to provide a simple solution to the above problems.
In randomized linear NC, relay nodes randomly and uniformly combine the
incoming messages they have received and forward them to their neighbors.
In addition to the above-mentioned advantages for randomized linear NC and
more importantly, it is shown in [4] that by choosing the nodes operation lo-
cally and randomly the multicast capacity of the network can be achieved with
high probability.

In this thesis, we mainly focus on communication networks where the relay
nodes perform randomized linear NC. We study the unicast and multiple access
problem in such a scenario where the source(s) and destination(s) do not know
the end-to-end network operation. Although we focus on theoretical problems
in this thesis, these are motivated from practical applications.

1.1 Contributions

The main contributions of this thesis are as follows.

• We characterize the capacity of a unicast communication scenario as well
as the rate region for a two users multiple access channel (MAC) in
a non-coherent NC setup. To this end, we model the overall network
operation by a multiplicative matrix channel defined over a finite field and
consider two different probabilistic model for the channel transfer matrix.
In the first model, we consider that the transfer matrices distributed
uniformly at random among all possible matrices and in the second model
we study the situation where only the rank distribution of the transfer
matrices is known. In both cases we characterize the capacity as well
as propose capacity achieving schemes. Our results imply that coding
over subspaces, first proposed in [1], is sufficient to achieve the capacity.
Moreover, we show that for the most practical situations the rate loss
due to the overhead of using coding vectors is negligible.
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• We observe that in a randomized linear NC scenario, the message packets
traversing the network are not completely arbitrary and carry topological
and state-dependent information about the network. In order to extract
this information, we study the properties of subspaces spanned by the
message packets received at every node and leverage them towards dif-
ferent applications including network tomography, network management,
and Byzantine attack detection.
• We study the problem of secret key sharing among multiple trusted (au-
thenticated) nodes in the presence of a passive eavesdropper. We as-
sume that the nodes have access to a broadcast channel overheard by
the eavesdropper and are able to discuss over a public channel. In this
thesis we focus on different types of broadcast channels. For an erasure
broadcast channel, we characterize the secrecy capacity and propose an ef-
ficient achievability scheme for secret sharing which achieves the capacity.
We then extend this result for a state-dependent deterministic broadcast
channel by characterizing the secrecy capacity and proposing an efficient
achievability scheme. By using the above results and applying a nested
message set, degraded channel wiretap code, we propose an achievability
scheme for a state-dependent Gaussian broadcast channel. The proposed
scheme achieves the optimal performance for the high dynamic range
(where the channel gain differs significantly over different states), high
SNR regime. Finally, we consider a non-coherent NC broadcast channel
and propose an efficient achievability scheme for an arbitrary number of
nodes. To this end, we use the insights we gain from studying the prob-
lem of secret sharing over an erasure broadcast channel. The proposed
scheme is based on subspace coding and we use properties of randomly
chosen subspaces developed in Chapter 2.

1.2 Outline

This thesis is organized in three parts. In Part I, we study the optimal
transmission rate for a non-coherent unicast NC scenario as well as a non-
coherent NC multiple access channel. To this end, in Chapter 3, we model the
non-coherent NC channel by a multiplicative matrix channel with uniform dis-
tribution over the channel transfer matrices. This model is extended to a wider
class of matrix channels in Chapter 4, i.e., channels where only the rank distri-
bution of the transfer matrices is known. As a consequence of Chapters 3 and
4, we find that using coding vectors does not result in a dramatic rate loss if the
packet length is not small. However, this result is derived under the assumption
that all of the different combinations of the source packets could possibly occur
during the information transmission in the network. In Chapter 5, we relax this
constraint and consider the situation where each packet traversing the network
is a linear combination of a small number of source packets. For this scenario,
we show that the overhead of using coding vectors can be reduced by applying
an end-to-end coding scheme.
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In Part II, using the properties of randomly chosen subspaces stated in Sec-
tion 2.4, we study the subspaces properties of randomized linear NC. We lever-
age these properties and adapt them towards different applications including
network tomography, network management, and Byzantine attack detection.

In Part III of the thesis, we study the problem of secret key sharing among
multiple terminals in the presence of a passive eavesdropper. To this end, in
Chapter 7, we focus on wireless environments. First, we model a wireless com-
munication channel by an erasure broadcast channel. Then, we extend this
model to a state-dependent deterministic broadcast channel. By using the two
previous results, we propose an achievability scheme for a state-dependent
Gaussian broadcast channel. In Chapter 8, we study a similar problem but
instead we focus on secret sharing among multiple nodes communicating over
a network performing randomized linear NC. For this setup, we propose upper
and lower bounds for the secrecy capacity. Moreover, the proposed achievability
scheme is also efficient.

Finally, we summarize the thesis in Chapter 9. The conclusions are followed
by a discussion on various possible directions for future work.



“Science never solves a problem

without creating ten more.”

- George Bernard Shaw

Background and Some

Preliminary Lemmas 2
2.1 Notation

We here introduce the frequently used notation and definitions we are going
to use in the following chapters.

Vectors and Matrices over a Finite Field

Let q ≥ 2 be a power of a prime. Then, we use Fq to denote the finite field
of size q, Fm×n

q to denote the set of all m × n matrices over Fq, and FL
q to

denote the set of all row vectors of length L. The set FL
q forms a L-dimensional

vector space over the field Fq. Moreover, we use Fm×n,k
q to denote the set of all

m× n matrices of rank k over Fq.
For a set of vectors {v1, . . . ,vk} we denote their linear span by 〈v1, . . . ,vk〉.

For a matrix X, 〈X〉 is the subspace spanned by the rows of X and 〈X〉c is
the subspace spanned by the columns of X. We then have

rank(X) = dim 〈X〉 = dim 〈X〉c . (2.1)

Linear Spaces over a Finite Field

Let Π be an arbitrary vector space of finite dimension defined over a finite
field Fq. Suppose Π1 and Π2 are two subspaces of Π, i.e., Π1 ⊑ Π and Π2 ⊑ Π.
We use Π1 ∩ Π2 to denote the common subspaces of both Π1 and Π2 and
Π1 +Π2 as the smallest subspace that contains both Π1 and Π2, namely,

Π1 +Π2 = {v1 + v2|v1 ∈ Π1,v2 ∈ Π2} . (2.2)

It is well known that

dim (Π1 +Π2) = dim (Π1) + dim (Π2)− dim (Π1 ∩ Π2) . (2.3)

5
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We use the following metric to measure the distance between two subspaces,

dS(Π1,Π2) , dim(Π1 + Π2)− dim(Π1 ∩ Π2)

= dim(Π1) + dim(Π2)− 2 dim(Π1 ∩Π2). (2.4)

In addition to the metric dS(·, ·) defined above, in some cases we will also need
a measure that compares how a set A of subspaces differs from another set
B of subspaces. For this we will use the average pair-wise distance defined as
follows

DS(A,B) ,
1

|A||B|
∑

πa∈A,πb∈B

dS(πa, πb). (2.5)

It should be noted that the above relation does not define a metric for the set
of subspaces because the self distance of a set with itself is not zero. However,
DS(·, ·) satisfies the triangle inequality.

Two subspaces Π1 and Π2 are called orthogonal if Π1 ∩ Π2 = {0}. Two
subspaces Π1 and Π2 of Π are called complementary if they are orthogonal
and Π1 + Π2 = Π. These definitions can also be extended to more than two
subspaces. Multiple subspaces Π1 . . . ,Πk are called orthogonal if

dim(Π1 + · · ·+Πk) = dim(Π1) + · · ·+ dim(Πk). (2.6)

The subspaces Π1, . . . ,Πk of a space Π are called complementary if they are
orthogonal and Π1 + · · ·+Πk = Π.

Now, consider two subspaces Π1 and Π2. We define the subtraction of Π2

from Π1 by U = Π1\sΠ2 where U is any subspace of Π1 which is complementary
with Π1 ∩ Π2. Note that, given Π1 and Π2, U is not uniquely defined.

Asymptotics

We use the big-O notation which is defined as follows. Let f(x) and g(x)
be two functions defined on some subset of the real numbers. We write f(x) =
O (g(x)) as x→∞, if there exists a positive real numberM and a real number
x0 such that |f(x)| ≤ M |g(x)| for all x > x0. For the little o notation we
use the following definition. We write f(x) = o(g(x)) as x → ∞, if for all
ǫ > 0 there exists a real number x0 such that |f(x)| ≤ ǫ · |g(x)| for all x > x0.
We use also the big-Ω notation which is defined as follows. We write f(x) =
Ω (g(x)) as x→∞, if we have g(x) = O (f(x)) as x→∞. Finally, we use the
big-Θ notation to denote that a function is bounded both above and below by
another function asymptotically. Formally, we write f(x) = Θ (g(x)) as x →
∞, if and only if we have f(x) = O (g(x)) and f(x) = Ω (g(x)) as x→∞.

Graphs

In this thesis, we represent a communication network by a graph G = (V,E)
with set of vertices V and set of edges E ⊆ V ×V . To every edge we associate a
capacity which captures the maximum possible communication rate over that
particular edge.
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If the graph G = (V,E) is directed, for an arbitrary edge e = (u, v) ∈ E, we
denote head(e) = v and tail(e) = u. For an arbitrary node v ∈ V , we denote
In(v) the set of incoming edges to v and Out(v) the set of outgoing edges from
v.

Definition 2.1. A cut between two vertices S and R is a set of graph edges
whose removal disconnects S from R. A min-cut is a cut with the smallest
(minimal) value. The value of the cut is the sum of the capacities of the edges
in the cut.

For unit capacity edges, the value of a cut equals the number of edges in
the cut, and it is sometimes referred to as the size of the cut. We will use the
term min-cut to refer to both the set of edges and to their total number. Note
that there exists a unique min-cut value, and possibly several min-cuts.

Additional Notations

For the convenience of notation, we use [i : j] to denote the set {i, i +
1, . . . , j − 1, j} where i, j ∈ Z.

We use the symbols “≻” and “≺” to denote the element-wise inequality
between vectors and matrices of the same size.

Given random variablesX1, . . . , Xm, we writeX1:m to denote (X1, . . . , Xm).
We use also Xt0:t to denote (X [t0], . . . , X [t]) where t is the discreet time index.
When t0 = 1 we simply write Xt to denote (X [1], . . . , X [t]).

Let Uni (M) denote the uniform distribution over the setM. For example,
we use Uni

(
FL
q

)
to denote the uniform distribution over vectors of length L

that are defined over finite field Fq. Also for m × n matrices over Fq, we use
Uni

(
Fm×n,r
q

)
to denote the uniform distribution over m×n matrices with rank

r.

2.2 A Brief Introduction to Network Coding

Let G = (V,E) be a graph with set of vertices V and set of edges E ⊆ V ×V
representing a communication network. We assume that each edge has unit
capacity and to model edges with higher capacity we allow parallel edges.

The main idea behind NC is simple but elegant. The nodes in a communi-
cation network combine the information flows instead of just forwarding them.
More precisely, consider a relay node v ∈ V in a networkG = (V,E) as depicted
in Figure 2.1. In the NC scheme, the transmitted symbols at every output of
the node v is a function of the received symbols at v, namely,

w
(v)
i = f

(v)
i (u1, . . . ,uIn(v)), i ∈ [1 : Out(v)]. (2.7)

However, in order to employ NC in practice where real networks can be hugely

complex, the operation of functions f
(v)
i should be simple. Linear functions are

among the simplest operations that can be used to implement NC in a network.
More importantly, it is shown in [5] (see also Theorem 2.1) that there is no loss
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v

w
(v)
i

= f
(v)
i

(u1, . . . ,uIn(v))

u1
uIn(v)

Figure 2.1 – Operation of relay nodes in a network performing NC.

in the transmission rate of a multicast scenario when the nodes operations are
linear. In this case we can rewrite (2.7) as follows

w
(v)
i =

In(v)∑

j=1

α
(v)
i,j uj , i ∈ [1 : Out(v)], (2.8)

where uj ,w
(v)
i ∈ FL

q , L is the packet length, α
(v)
i,j ∈ Fq, and

α
(v)
i ,

[
α
(v)
i,1 · · · α

(v)
i,In(v)

]
∈ FIn(v)

q (2.9)

is called a local coding vector. It is worth to mention that when L = 1 the scheme
is called scaler NC. However, in this thesis we assume that the transmitted and
the received symbols are packets over a finite field Fq, namely, we assume L > 1.

Suppose that the source node S injects packets x1, . . . ,xn into the network

where xi ∈ FL
q . Consider the received packet y

(R)
i over the ith incoming edge

of the receiver node R. Because the network nodes perform linear operations
we can write

y
(R)
i =

n∑

j=1

β
(R)
i,j xj , ∀i ∈ [1 : In(R)], (2.10)

where β
(R)
i,j ∈ Fq and

β
(R)
i ,

[
β
(R)
i,1 · · · β

(R)
i,n

]
∈ Fn

q (2.11)

is called a global coding vector.
We may also observe that due to the linearity of the network operation, at

every node v we have
〈
w

(v)
1 , . . . ,w

(v)
Out(v)

〉
⊑
〈
u1, . . . ,uIn(v)

〉
, (2.12)

and at every receiver R we have
〈
y
(R)
1 , . . . ,y

(R)
In(R)

〉
⊑ 〈x1, . . . ,xn〉 . (2.13)
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Main Theorems of NC

Now, we briefly review some of the important results of NC. Let us consider
a multicast scenario over a networkG = (V,E) where c unit rate sources located
on the same node S aim to transmit their information to Nr destination nodes
R1, . . . , RNr

. Then, the main theorem of NC [6, 5, 7] can be stated as following.

Theorem 2.1 ([8, Theorem 2.2]). Consider a directed acyclic graph G = (V,E)
with unit capacity edges, c unit rate sources located on the same vertex of the
graph and Nr receivers. Assume that the value of the min-cut to each receiver is
c. Then there exists a multicast transmission scheme over a large enough finite
field Fq, in which intermediate network nodes linearly combine their incoming
information symbols over Fq, that delivers the information from the sources
simultaneously to each receiver at a rate equal to c.

If the network topology is known a priori there exist polynomial time algo-
rithms (e.g., see [9, 10, 11, 12]) that deterministically construct a linear network
code over a sufficiently large field size for a given multicast scenario. However,
in most practical applications it is not viable to assume the complete knowl-
edge of the network topology is available. Even if this knowledge is available, it
may not be practically possible to apply the deterministic code design schemes
due the complexity of the network. In contrast to these deterministic code con-
structions, a randomized scheme is proposed in [4] which is very simple and
can be performed in a decentralized manner. This result can be summarized in
the following theorem.

Theorem 2.2 ([8, Theorem 5.4]). Consider an instance multicast scenario
from a source node S to receivers in a set R over a graph G = (V,E) with
Nr = |R| receivers, where the components of local coding vectors are chosen
uniformly at random from a field Fq with q > Nr. The probability that all Nr

receivers can decode all c sources is at least (1−Nr/q)
η′

, where η′ ≤ |E| is the
maximum number of coding points employed by any receiver.

No matter if the network code is designed a priori using a centralized al-
gorithm or if it is chosen randomly and in a distributed manner, the received
packets at a particular node R is a linear transformed version of the transmitted
packets by the source S. In particular, if we represent the packets injected by
the source S by the rows of a matrix X ∈ FM×L

q and similarly, if we represent

the received packets at a node R by the rows of Y (R) ∈ FN×L
q , then we can

write

Y (R) = H(R)X, (2.14)

where H(R) ∈ FN×M
q is the channel transfer matrix 1; it summarizes all of

the network operations from the source S to the destination R. If the transfer

1. Whenever it is clear from the context or if it is not very important to explicitly mention
to the receiver R, we will remove the superscript “(R)” from the channel transfer matrix H

and the received matrix Y .
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matrix H(R) is fixed and known by the transmitter and receiver, the scheme is
called coherent NC. Otherwise, it is called non-coherent NC. The non-coherent
NC is motivated by the decentralized and randomized network code design.

NC in Practice: Coding Vectors vs. Subspace Coding

In practical networks, information is send in packets. Each packet consists
of L symbols from a finite field Fq. Coding is performed symbol-wise to each
L symbols of every packet.

In large and dynamically changing networks, the packets are subjected to
random delays, synchronization errors, and they often follow different routes. It
is thus difficult to implement a centralized NC algorithm. To deal with the lack
of synchronization, the source packets are grouped into sets called generations.
Source packets belonging in the same generation are allowed to randomly and
in a decentralized manner get combined together, as they traverse the network.
Assume that each generation contains M source packets {x1, . . . ,xM}.

Implementing randomized NC in practice, is very simple because it does not
require any knowledge of the network topology. However, due to its randomized
nature, each receiver R does not have access to the channel transfer matrices
H(R) (see (2.14)) in order to recover transmitted packets by inverting H(R).

To solve this problem, two different approaches have been proposed so far.
The classical coding vector approach appends to each source packet xi a coding
vector xC

i . Initially, the sources employ as the coding vector

xC
i = ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ FM

q , (2.15)

i.e., ei has zeros everywhere and 1 is at the ith position. Thus the packets sent
by the sources are of the form

xi = [ei | xI
i ] ∈ FL

q , (2.16)

where xI
i ∈ FL−M

q is the information part of the transmitted packets. We
assumed without loss of generality that the coding vector is placed at the
beginning of the packet. Intermediate network nodes perform linear operations
on their received packets. In general an arbitrary packet p propagating in the
network have the form

p = [pC | pI ] ∈ FL
q , (2.17)

where pI ∈ FL−M
q is a linear combination of source packets (we call this some-

times information vector), and pC ∈ FM
q is the coding vector that contains the

linear coefficients for the combined source packets.

Each receiver that receivesM packets y1, . . . ,yM with linearly independent
coding vectors can recover the original source information. To do so, the receiver
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Figure 2.2 – Linear networks preserve the subspaces spanned by the transmitted
vectors x1, . . . ,xM , where we have ΠS , 〈x1, . . . ,xM 〉.

solves the linear equations




yI
1

yI
2
...

yI
M


 =




β11 β12 · · · β1M
β21 β22 · · · β2M
...

...
. . .

...
βM1 βM2 · · · βMM




︸ ︷︷ ︸
H∈FM×M

q




xI
1

xI
2
...

xI
M


 , (2.18)

where the ith row of matrix H is the coding vector corresponding to received
packet yi. Since the receiver collects M linearly independent coding vectors,
the matrix H is full rank, and thus the original packets can be recovered.

An alternative approach is to use subspace coding first proposed in [1]. Sub-
space coding dispenses of the need to convey coding vectors. In this scheme,
neither the receiver(s) nor the source know the channel transfer matrices H in
(2.18), i.e., the specific set of linear operations. Sources can only communicate
information using subspaces which are unaffected by the linear operations per-
formed on them; see Figure 2.2. Hence, each source uses a subspace codebook,
i.e., maps each message to a set of vectors that span a different subspace. More
precisely, the information transmission is done not via the choice of xi but
rather by the choice of the vector space spanned by {xi}Mi=1, i.e.,

ΠS , 〈x1, . . . ,xM 〉 . (2.19)

In Chapters 3 and 4, we study the non-coherent NC scenario from an in-
formation theoretical perspective.

2.3 Grassmanian and Gaussian Coefficient

Definition 2.2 (Grassmannian and Gaussian coefficient [13, 14]). The Grass-
mannian Gr(L, d)q is the set of all d-dimensional subspaces of the L-dimensional
space over a finite field Fq, namely,

Gr(L, d)q ,
{
π ⊑ FL

q : dim(π) = d
}
. (2.20)
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The cardinality of Gr(L, d)q is the Gaussian coefficient, namely,

[
L

d

]

q

, |Gr(L, d)q| =
(qL − 1) · · · (qL−d+1 − 1)

(qd − 1) · · · (q − 1)
. (2.21)

Definition 2.3. We define Sp(L, k)q to be the set (sphere) of all subspaces of
dimension at most k in the L-dimensional space FL

q , namely,

Sp(L, k)q ,

min[k,L]⋃

d=0

Gr(L, d)q =
{
π ⊑ FL

q : dim(π) ≤ min[k, L]
}
. (2.22)

The cardinality of Sp(L, k)q equals

S(L, k)q , |Sp(L, k)q| =
min[k,L]∑

d=0

|Gr(L, d)q|. (2.23)

Definition 2.4. We denote by ψ(L, k, πd)q the number of different k×L matri-
ces with elements from a field Fq, such that their rows span a specific subspace
πd ⊑ FL

q of dimension 0 ≤ d ≤ min[k, L].

For simplicity, in the rest of the thesis we will drop the subscript q in the
previous definitions whenever it is obvious from the context.

Preliminary Lemmas

We here state some preliminary lemmas related to the definitions introduced
in Section 2.3.

Existing bounds in the literature allow to approximate the Gaussian num-
ber, for example, we have from [1, Lemma 4] that (see also [15, Section III])

qd(L−d) <

[
L

d

]
<

qd(L−d)

∏∞
j=1(1− q−j)

< 4qd(L−d), ∀d : 0 < d < L. (2.24)

Using Definition 2.21 and (2.24) we have Lemma 2.1.

Lemma 2.1. For large values of q, we can approximate the Gaussian number
as follows [

L

d

]
= qd(L−d)

(
1 +O(q−1)

)
. (2.25)

Lemma 2.2. The following relation for the Gaussian number holds [16, 14]

[
L− d
D − d

][
L

d

]
=

[
L

D

][
D

d

]
, (2.26)

for all 0 ≤ d ≤ D ≤ L.
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Lemma 2.3. The number of different m × n matrices with rank 0 ≤ k ≤
min[m,n] over Fq is equal to [17]

∣∣Fm×n,k
q

∣∣ = q(m+n−k)k
k−1∏

i=0

(1− qi−n)(1− qi−m)

(1− qi−k)

=
∣∣Fk×m,k

q

∣∣
[
n

k

]

=
∣∣Fk×n,k

q

∣∣
[
m

k

]
. (2.27)

By applying [18, Lemma 2] with proper choice of the parameters we have
the following lemma.

Lemma 2.4. Let πy be a fixed subspace of FL
q with dimension dy. Then the

number of different subspaces πx ⊑ FL
q with dimension dx, dy ≤ dx ≤ L, that

contain πy is equal to
[
L−dy

dx−dy

]
.

Lemma 2.5. For ψ(L, k, πd) given in Definition 2.4, we have that [16]

ψ(L, k, πd) =

d−1∏

i=0

(qk − qi) = q(
d
2)

d−1∏

i=0

(qk−i − 1), (2.28)

i.e., it does not depend on L.

Remark 2.1. Since ψ(L, k, πd) does not depend on L, and only depends on πd
through its dimension, as a shorthand notation we will also use ψ(k, d) instead
of ψ(L, k, πd), where d = dim(πd).

Using Lemma 2.5 the following lower and upper bounds are straightforward

(1− dq−k+d−1) <

(
1−

d−1∑

i=0

q−k+i

)
<
ψ(k, d)

qkd
< 1, (2.29)

which imply Lemma 2.6 (see also [15]).

Lemma 2.6. For large values of q the following approximation holds

ψ(k, d) = qkd
(
1−O(q−1)

)
. (2.30)

It is also worthwhile to mention that ψ(k, d)
[
L
d

]
is the number of k × L

matrices of rank d. We can count all the k × L matrices through the following
Lemma 2.7 (also see [13, 14], and [16, Corollary 5]).

Lemma 2.7. For every k > 0 and L > 0 we can write

min[k,L]∑

d=0

ψ(k, d)

[
L

d

]
= qkL, (2.31)

where ψ(k, 0) = 1.
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2.4 Properties of Random Vector Spaces over a Finite Field
Fn
q

In this section, we will state and prove some basic properties and results that
we will exploit towards various applications in the following chapters. In partic-
ular, we will investigate the properties of random sampling from vector spaces
over a finite field. Such properties give us a better insight and understanding of
randomized NC and form a foundation for the results and algorithms presented
in Chapters 6 and 8.

Sampling Subspaces over Fn
q

Here, we explore properties of randomly sampled subspaces from a vector
space Fn

q . We start with the following lemma that explores properties of a single
subspace.

Lemma 2.8. Suppose we choose m vectors from an n-dimensional vector space
ΠS = Fn

q uniformly at random to construct a subspace Π. Then the subspace
Π will be full rank (has dimension min[m,n]) w.h.p. (with high probability) 2,
namely,

P [dim(Π) = min[m,n]] = 1−O
(
q−1
)
. (2.32)

Proof. For the proof refer to Appendix 2.A.

We conclude that for large values of q, selecting m ≤ n vectors uniformly
at random from Fn

q to construct a subspace Π is equivalent to choosing an
m-dimensional subspace from Fn

q uniformly at random. Note that this is not
true for small values of q.

We next examine connections between multiple subspaces.

Lemma 2.9. Let Π1 and Π2 be two subspaces of ΠS = Fn
q with dimension d1

and d2 respectively, intersection of dimension d12 and Π1 * Π2 (i.e., d12 < d1).
Construct Π′

1 by choosing m vectors from Π1 uniformly at random. Then

P [Π′
1 ⊏ Π2] = O

(
q−m

)
. (2.33)

Proof. For the proof refer to Appendix 2.A.

Lemma 2.10. Suppose Πk is a k-dimensional subspace of a vector space ΠS =
Fn
q . Select m vectors uniformly at random from ΠS to construct the subspace

Π. Then w.h.p. we have

dim(Π ∩Πk) = min
[
k, (m− (n− k))+

]

=
(
min[m,n] + k − n

)+
. (2.34)

2. Throughout this section, when we talk about an event occurring with high probability,
we mean that its probability behaves like 1−O

(

q−1
)

, which goes to 1 as q → ∞.
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Proof. For the proof refer to Appendix 2.A.

Corollary 2.1. Suppose Π1 and Π2 are two subspace of Fn
q with dimension d1

and d2 respectively and joint dimension d12. Let us take m1 vectors uniformly
at random from Π1 and m2 vectors from Π2 to construct subspaces Π̂1 and Π̂2.
Then w.h.p. we have

dim(Π̂1 ∩ Π̂2) =min
[
d12, (m1 +m2 − (d1 + d2 − d12))+,

(m1 − (d1 − d12))+, (m2 − (d2 − d12))+
]
. (2.35)

Proof. For the proof refer to Appendix 2.A.

By choosing Π1 = Π2 = Fn
q in Corollary 2.1 we have the following corollary.

Corollary 2.2. Let us construct two subspaces Π̂1 and Π̂2 by choosing m1 and
m2 vectors uniformly at random respectively from Fn

q . Then the subspaces Π̂1

and Π̂2 will be disjoint w.h.p. if m1 +m2 ≤ n.

Lemma 2.11. Suppose that k subspaces Π1, . . . ,Πk, with dimensions d1, . . . , dk,
are chosen independently and uniformly at random from Fn

q . Then with high
probability (probability of order 1−O(q−1)) we have

dim (Π1 + · · ·+Πk) = min [d1 + · · ·+ dk, n] , (2.36)

and

dim (Π1 ∩ · · · ∩ Πk) = [d1 + · · ·+ dk − (k − 1)n]
+
. (2.37)

Note that if one of the subspaces, for example Π1, be a fixed subspace then the
above results still hold.

Proof. For the proof refer to Appendix 2.A.

We are now ready to discuss one of the important properties of randomly
chosen subspaces which is very useful for our work: randomly selected subspaces
tend to be “as far as possible”. We will clarify and make precise what we mean
by “as far as possible”, see also [19]. We first review the definition of a subspace
in general position with respect to a family of subspaces.

Definition 2.5 ([19, Chapter 3]). Let ΠS be an n-dimensional vector space over
the field Fq and for i = 1, . . . , r, let Πi be a subspace of ΠS, with dim(Πi) = di.
A subspace Π ⊑ ΠS of dimension d is in general position with respect to the
family {Πi}ri=1 if

dim(Πi ∩ Π) = max [di + d− n, 0] , ∀i ∈ {1, . . . , r}. (2.38)



16 Background and Some Preliminary Lemmas

It should be noted that max[di+d−n, 0] is the minimum possible dimension
of (Πi ∩Π). So what the above definition says is that the intersection of Π and
each Πi is as small as possible. Using the above definition we can state the
following theorem 3.

Theorem 2.3. Suppose {Πi}ri=1 are subspaces of ΠS = Fn
q . Let us construct a

subspace Π by randomly choosing m vectors from ΠS. Then Π will be in general
position with respect to the family {Πi} w.h.p.

Proof. For the proof refer to Appendix 2.A.

Theorem 2.3 demonstrates a nice property of randomized NC where the
subspaces spanned by coding vectors (or more generally, the subspace spanned
by the transmitted packets) tend to be as far as possible on different paths of
the network.

In Chapter 6, we will use these properties of random subspaces towards
studying different applications, including topology inference and network man-
agement in networks employing NC. To this end, we will derive similar prop-
erties but for random subspaces evolving during the time.

3. Different versions of this theorem can be easily derived from results in the literature
[19], but we repeat here a short derivation for completeness.
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2.A Omitted Proofs

Proof of Lemma 2.8. First, let us fix a basis for ΠS . Then choosing m vector
uniformly at random from ΠS is equivalent to choose an m × n matrix A

uniformly at random from Fq and construct Π = 〈A〉 with respect to this fixed
basis.

From Lemma 2.3 we know that the number of different m×n matrices with
rank 0 ≤ k ≤ min[m,n] over Fq is equal to

∣∣Fm×n,k
q

∣∣ = q(m+n−k)k
k−1∏

i=0

(1− qi−n)(1 − qi−m)

(1− qi−k)
. (2.39)

So we can write

P [dim(Π) = k] =

∣∣Fm×n,k
q

∣∣
qmn

. (2.40)

Then using the Taylor series 1
1−ǫ = 1+ǫ+ǫ2+ · · · for |ǫ| < 1, choosing ǫ = q−1,

we can write

Pr[dim(Π) = k] = q−(m−k)(n−k)[1−O(q−1)]. (2.41)

By setting k = min[m,n] we are done.

Proof of Lemma 2.9. The probability that all m vectors are in the intersection
is

P [Π′
1 ⊏ Π2] =

(
qd12

qd1

)m

= q(d12−d1)m, (2.42)

which is of order O (q−m) provided that Π1 * Π2 , i.e., d12 < d1.

Proof of Lemma 2.10. Let v1, . . . ,vm be the vectors chosen randomly from
ΠS to construct Π, i.e., Π = 〈v1, . . . ,vm〉. Then construct the sequence of
subspaces Π(i), i = 0, . . . ,m, as follows. First, set Π(0) , Πk and then define
Π(i) for i 6= 0 recursively, Π(i) = Π(i − 1) + 〈vi〉. We also define d(i) ,

dim(Π(i)), i = 0, . . . ,m. From Lemma 2.9, by choosing Π1 = ΠS , Π2 = Π(i−1)
and m = 1 we deduce that d(i) = d(i − 1) + 1 with probability 1 − O

(
q−1
)
,

unless d(i− 1) = n.
Now we consider two cases. First, if m + k ≤ n then we have dim(Π +

Πk) = k + m or equivalently dim(Π ∩ Πk) = 0 with high probability, i.e.,
1 − O

(
q−1
)
. Secondly, when m + k > n we have dim(Π + Πk) = n with

probability 1−O
(
q−1
)
. From Lemma 2.8 we have dim(Π) = min[m,n] w.h.p.

So we have dim(Π∩Πk) = dim(Πk)+dim(Π)−dim(Πk+Π) = k+min[m,n]−n.
Combining these two cases we can write

dim(Π ∩ Πk) =
(
k +min[m,n]− n

)+
, (2.43)

w.h.p., which completes the proof.
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Proof of Corollary 2.1. Let us define Π12 = Π1 ∩ Π2, where d12 = dim(Π12).
Using Lemma 2.10, and taking ΠS = Π1 and Πk = Π12, we have

dim(Π̂1 ∩ Π12) = min
[
d12, (m1 − (d1 − d12))+

]
, (2.44)

with probability 1−O
(
q−1
)
. Now, we can write

P
[
d̂12 = α

]
= P

[
d̂12 = α| dim(Π̂1 ∩Π12) = β

]
P
[
dim(Π̂1 ∩ Π12) = β

]

+ P
[
d̂12 = α| dim(Π̂1 ∩ Π12) 6= β

]
P
[
dim(Π̂1 ∩ Π12) 6= β

]
, (2.45)

where d̂12 = dim(Π̂1 ∩ Π̂2). Substituting β = min [d12, (m1 − (d1 − d12))+] we
obtain

P
[
d̂12 = α

]
=

P
[
d̂12 = α| dim(Π̂1 ∩ Π12) = β

] (
1−O

(
q−1
))

+O
(
q−1
)
. (2.46)

Selecting α properly and using Lemma 2.10 one more time, we get

P
[
d̂12 = α

]
= 1−O

(
q−1
)
, (2.47)

where α = min
[
β, (m2 − (d2 − β))+

]
, which completes the proof.

Proof of Lemma 2.11. The results stated in the lemma follow from Corollary 2.1
by using induction on the number of subspaces.

Proof of Theorem 2.3. To prove the theorem, it is sufficient to show that (2.38)
is valid for one specific i with high probability. This is sufficient because if pi is
the probability that Π is in general position with respect to each Πi, i = 1, . . . , r,
then the probability that Π is in general position with the whole family is lower
bounded by 1−∑r

i=1(1− pi).
Now by applying Lemma 2.10, we know that pi = 1−O

(
q−1
)
which com-

pletes the proof.
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Overview

There has been a growing consensus in the research community that ran-
domized NC [4] is a promising technique to be applied in networking applica-
tions, such as wireless networks and content distribution networks. Due to its
randomized nature and because practical networks are subjected to random
delays, synchronization errors, packet erasures, nodes failures, and topology
changes, it is not viable to assume that the linear combinations performed at
the intermediate nodes are deterministically known at the receivers.

In practical networks, where such deterministic knowledge is not sustain-
able, the most popular approach is to append coding vectors at the headers
of the packets to keep track of the linear combinations of the source packets
they contain (see, e.g., [20]). This results in a loss of information rate that can
be significant with respect to the min-cut value. In this scheme use of coding
vectors is akin to use of training symbols to learn the transformation induced
by a network.

An alternative approach is to assume a non-coherent scenario for communi-
cation, as proposed in [1], where neither the source(s) nor the receiver(s) have
any knowledge of the network topology or the network nodes operations.

In this part, we focus on such a non-coherent communication scenario for
a linear NC system where the following questions will be investigated:

1. What are the fundamental limits on the information transmission rates
in a non-coherent NC scenario?

2. What kind of coding schemes can achieve the optimal rates?

3. How do the optimal rates compare to the coherent case and to the schemes
using coding vectors?

4. Is it possible to reduce the overhead of NC in networks where the inter-
mediate nodes operations are unknown.

To this end, we propose two different models where in both case the non-
coherent NC channel is modeled by a multiplicative matrix channel over some
finite field Fq. In Chapter 3, we model the non-coherent NC by imposing a
uniform and i.i.d. distribution over the channel transfer matrix in every time-
slot. For this model we characterize the point-to-point capacity as well as the
multiple sources (multiple access) rate region. On the other hand, in Chap-
ter 4, we consider a partially known statistical model for the channel transfer
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matrix, i.e., it is assumed that the transfer matrices changes independently and
arbitrarily from time-slot to time-slot such that their rank distributions follow
a known and fixed distribution. For both of these models we show that the
subspace coding (originally proposed in [1]) is indeed information theoretically
optimal to achieve the channel capacity. We further show that for the uniform
transfer matrix model, the rate loss due to using coding vectors is of order
oq(1) as the field size grows.

The result of Chapter 3 shows that in general it is not possible to further
reduce the overhead of coding vectors because all of the possible linear com-
binations of the source packets are realizable. In contrast, in Chapter 5, we
consider the problem of reducing the NC overhead for the case where the cod-
ing vectors are a sparse linear combinations of the source packets. Then, we
present a novel scheme to reduce the coding vectors overhead without changing
the operation of relay nodes in the network.



“The capacity to be puzzled is

the premise of all creation, be it

in art or in science.”

- Erich Fromm

Capacity of Non-coherent

Network Coding 3
The first fundamental result proved in NC, and perhaps still the most useful

from a practical point of view today, is that, using linear NC [5, 7], one can
achieve rates up to the common min-cut value when multicasting to Nr ≥ 1 re-
ceivers. In general this may require operations over a field of size approximately√
Nr, which translates to communication using packets of length 1

2 logNr bits
[21].

However, this result assumes that the receivers know perfectly the opera-
tions that the network nodes perform. In large dynamically changing networks,
collecting network information comes at a cost, as it consumes bandwidth that
could instead have been used for information transfer. In practical networks,
where such deterministic knowledge is not sustainable, the most popular ap-
proach is to perform randomized NC [4] and to append coding vectors at the
headers of the packets to keep track of the linear combinations of the source
packets they contain (see, e.g., [20]). The coding vectors have an overhead of
h logNr bits, where h is the total number of packets to be linearly combined.
This results in a loss of information rate that can be significant with respect to
the min-cut value. In particular, in wireless networks such as sensor networks
where communication is restricted to short packet lengths, the coding vector
overhead can be a significant fraction of the overall packet length [22, 23].

Use of coding vectors is akin to use of training symbols to learn the transfor-
mation induced by a network. A different approach is to assume a non-coherent
scenario for communication, as proposed in [1], where neither the source(s) nor
the receiver(s) have any knowledge of the network topology or the network
nodes operations. Non-coherent communication allows for creating end-to-end
systems completely oblivious to the network state. Several natural questions
arise considering this non-coherent framework: (i) what are the fundamental
limits on the rates that can be achieved in a network where the intermediate
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node operations are unknown, (ii) how can they be achieved, and (iii) how do
they compare to the coherent case.

In this chapter we address such questions for two different cases. First, we
consider the scenario where a single source aims to transmit information to
one or multiple receiver(s) over a network under the non-coherence assumption
using fixed packet length. Because network nodes only perform linear oper-
ations, the overall network behavior from the source(s) to a receiver can be
represented as a matrix multiplication of the sent source packets. We consider
operation in time-slots, and assume that the channel transfer matrices are dis-
tributed uniformly at random and i.i.d. over different time-slots. Under this
probabilistic model, we characterize the asymptotic capacity behavior of the
introduced channel and show that using subspace coding we can achieve the op-
timal performance. We extend our model for the case of multiple sources and
characterize the asymptotic behavior of the optimal rate region for the case of
two sources. We believe that this result can be extended to the case of more
than two sources using the same method that is applied in Section 3.4. For the
multi-source case we prove as well that encoding information using subspaces
is sufficient to achieve the optimal rate region.

The idea of non-coherent modeling for randomized NC was first proposed
in the seminal work by Koetter and Kschischang in [1]. In that work, the au-
thors focused on algebraic subspace code constructions over a Grassmannian.
Independently and in parallel to our work in [24], Montanari et al. [25] intro-
duced a different probabilistic model to capture the end-to-end functionality
of non-coherent NC operation, with a focus on the case of error correction ca-
pabilities. Their model does not examine subsequent time slots, but instead,
allows the packets block length (in this chapter terminology; packet length L)
to increases to infinity, with the result that the overhead of coding vectors
becomes negligible, very fast.

Silva et al. [26] independently and subsequent to our works in [24] and [27],
also considered a probabilistic model for non-coherent NC, which is an exten-
sion of the model introduced in [25] over multiple time-slots. In their model the
transfer matrix is constrained to be square as well as full rank. This is in con-
trast to our model, where the transfer matrix can have arbitrary dimensions,
and the elements of the transfer matrix are chosen uniformly at random, with
the result that the transfer matrix itself may not have full rank (this becomes
more pronounced for small matrices). Moreover, we extend our work to multi-
ple source multicast, which corresponds to a virtual non-coherent MAC. Our
results coincide for the case of a single source, when the packet length and the
finite field of operations are allowed to grow sufficiently large. Another differ-
ence is that the work in [26] focuses on additive error with constant dimensions;
in contrast, we focus on packet erasures.

Subsequent to our works [24, 27], Yang et al. [28, 29] (see also [30, 31])
considered a completely general scenario, making no assumption on the dis-
tribution of the transfer matrix. They obtained upper and lower bounds on
the channel capacity, and give a sufficient condition on the distribution of the
transfer matrix such that coding over subspaces is capacity achieving. They
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also studied the achievable rates of coding over subspaces.

Nobrega et al. [32] considered the case where the probability distribution of
the rank of the transfer matrix is arbitrary; however all matrices with the same
rank are equiprobable. Then, following an approach similar to Chapter 3 (see
also [33]), they expressed the capacity as the solution of a convex optimization
problem over O(min[M,N ]) variables. They also observed that in this case the
subspace codes are sufficient to achieve the capacity.

An interpretation of our results is that it is the finite field analog of the
Grassmannian packing result for non-coherentMIMO channels as studied in the
well known work in [34]. In particular, we show that for the non-coherent model
over finite fields, the capacity critically depends on the relationship between
the “coherence time” (or packet length L in our model) and the min-cut of
the network. In fact the number of active subspace dimensions depend on this
relationship; departing from the non-coherent MIMO analogy of [34].

All the missing proofs for lemmas, theorems, and etc., are given in Ap-
pendix 3.A unless otherwise stated.

It is important to mention that this chapter has been done as a joint work
with Soheil Mohajer 1.

3.1 Channel Model and Notation

3.1.1 Notation

In this chapter we use the notation introduced in Section 2.1. Moreover, we
use the calligraphic symbols, i.e., X or Y to denote a set of matrices. To denote
a set of subspaces we use the same calligraphic symbols but with a “∼”, i.e.,
X̃ or Ỹ.

For two real valued functions f(x) and g(x) of x, we use f(x)
.
= g(x) to

denote that 2

lim
x→∞

log f(x)

log g(x)
→ 1. (3.1)

We also use a similar definition for f
.
≤ g to denote that

lim
x→∞

log f(x)

log g(x)
→ c ≤ 1, (3.2)

where c is a constant.

1. Soheil Mohajer was a Ph.D. student at Ecole Polytechnique Fédérale de Lausanne
(EPFL), working under the supervision of prof. Suhas Diggavi. Now, he is doing a postdoc
at U.C. Berkeley.

2. One has to specify the growing variable whenever “
.
=” is used for multi-variate func-

tions. However, since in this work the growing variable is always q, the field size, we will not
repeat it for sake of brevity.
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3.1.2 The Non-Coherent Finite Field Channel Model

We consider a network where nodes perform random linear NC over a finite
field Fq. We are interested in the maximum information rate at which a single
(or multiple) source(s) can successfully communicate over such a network when
neither the transmitter nor the receiver(s) have any channel state information
(CSI). For simplicity, we will present the channel model and our analysis for
the case of a single receiver; the extension to multiple receivers (with the same
channel parameters) is straightforward, as we also discuss in the results section.

We assume that time is slotted and the channel is block time-varying. For
the single source communication, at time slot t, the receiver observes

Y [t] = H[t]X[t], (3.3)

where X[t] ∈ FM×L
q , H [t] ∈ FN×M

q , and Y [t] ∈ FN×L
q . At each time-slot,

the receiver receives N packets of length L (captured by the rows of matrix
Y [t]) that are random linear combinations of the M packets injected by the
source (captured by the rows of matrix X[t]). In our model, the packet length
L can be interpreted as the coherence time of the channel, during which the
transfer matrix remains constant. Each element of the transfer matrix H[t] is
chosen uniformly at random from Fq, changes independently from time slot to
time slot, and is unknown to both the source and the receiver. In other words,
H [t] ∼ Uni

(
FN×M
q

)
and has i.i.d. distribution over different blocks. In general,

the topology of the network may impose some constraints on the transfer matrix
H [t] (for example, some entries might be zero, see [7, 35, 36, 37]). However,
we believe that this is a reasonable general model, especially for large-scale
dynamically-changing networks where apart from random coefficients there ex-
ist many other sources of randomness. Formally, we define the non-coherent
matrix channel as follows.

Definition 3.1 (Non-coherent matrix channel Chm). This is defined to be the
matrix channel Chm : X → Y described by (3.3) with the assumption that H[t]
is i.i.d. and H[t] ∼ Uni

(
FN×M
q

)
. It is a discrete memory-less channel with

input alphabet X , FM×L
q and output alphabet Y , FN×L

q .

The capacity of the channel Chm is given by

Cm = max
PX

I(X;Y ), (3.4)

where PX is the input distribution. To achieve the capacity a coding scheme
may employ the channel given in (3.3) multiple times, and a codeword is a
sequence of input matrices from X . For a coding strategy that induces an
input distribution PX , the achievable rate is

R = I(X;Y ). (3.5)

Now we define a non-coherent subspace channel Chs which takes as an input
a subspace and outputs another subspace. Then, in Theorem 3.1 we will show
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that the two channels Chm and Chs are equivalent from the point of view of
calculating the mutual information between their inputs and their outputs.

Definition 3.2 (Non-coherent subspace channel Chs). This is defined to be the

channel Chs : X̃ → Ỹ with input alphabet X̃ = Sp(L,M) and output alphabet

Ỹ = Sp(L,N) and transition probability

PΠY |ΠX
(πy|πx) ,





ψ(T,N, πy)q
−N dim(πx) πy ⊑ πx,

0 otherwise,
(3.6)

where ΠX and ΠY are the input and output variables of the channel Chs.

The capacity of the channel Chs is given by

Cs = max
PΠX

I(ΠX ; ΠY ), (3.7)

where PΠX
is the input distribution defined over the set of subspaces X̃ .

We next consider a multiple sources scenario, and the MAC corresponding
to (3.3). In this case, we have

Y [t] =

s∑

i=1

Hi[t]Xi[t], (3.8)

where s is the number of sources, and each source i inserts Mi packets to the
network. Thus, Xi[t] ∈ FMi×L

q , Hi[t] ∈ FN×Mi
q and Y [t] ∈ FN×L

q . We can
also collect all Hi[t] in an N ×∑s

i=1Mi matrix HMAC[t] and all X i[t] in an∑s
i=1Mi × L matrix XMAC[t] as following

XMAC[t] ,




X1[t]
...

Xs[t]


 , (3.9)

and
HMAC[t] ,

[
H1[t] · · · Hs[t]

]
, (3.10)

so we can rewrite (3.8) as

Y [t] = HMAC[t]XMAC[t]. (3.11)

Each source i then controls Mi rows of the matrix XMAC[t]. Again we assume
that each entry of the matrices Hi[t] is chosen i.i.d. and uniformly at random
from the field Fq for all source nodes and all time instances.

Definition 3.3 (The non-coherent multiple access matrix channel Chm−MAC).
This is defined to be the channel Chm−MAC : X1 × · · · × Xs → Y described in
(3.8), with the assumption that Hi[t], i = 1, . . . , s, are i.i.d. and uniformly
distributed over all matrices FN×Mi

q , i = 1, . . . , s. It forms a discrete memory-

less MAC with input alphabets Xi , FMi×L
q , i = 1, . . . , s, and output alphabet

Y , FN×L
q .
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It is well known [38] that the rate region of any multiple access channel
including Chm−MAC is given by the closure of the convex hull of the rate vectors
satisfying

RS ≤ I(XS ;Y |XSc) ∀S ⊆ {1, . . . , s}, (3.12)

for some product distribution PX1(x1) · · ·PXs
(xs). Note that RS =

∑
i∈S Ri

where Ri is the transmission rate of the ith source, XS = {Xi : i ∈ S} and Sc
is the complement set of S.

As before, we define a non-coherent subspace version 3 of the matrix multiple
access channel and in Theorem 3.6 we show that from the point of view of rate
region these two channels are equivalent.

Definition 3.4 (Non-coherent subspace multiple access channel Chs−MAC).

This is defined to be the channel Chs−MAC : X̃1 × X̃2 → Ỹ with input alpha-

bets X̃i = Sp(L,Mi), i = 1, 2, output alphabet Ỹ = Sp(L,N) and transition
probability

PΠY |ΠX1 ,ΠX2
(πy |π1, π2) =



ψ(L,N, πy)q
−N dim(π1+π2) πy ⊑ π1 + π2,

0 otherwise,
(3.13)

where ΠX1 and ΠX2 are the input and ΠY is the output variables of the channel
Chs−MAC.

3.2 Main Results

Here, in this section we state the main results of this chapter.

3.2.1 Single Source

Our main results, Theorem 3.2 and Theorem 3.3, characterize the capacity
for non-coherent NC for the model given in (3.3). We show that the capacity
is achieved through subspace coding, where the information is communicated
from the source to the receivers through the choice of subspaces. Formally, we
have the following results.

Theorem 3.1. The matrix channel Chm : X → Y defined in Definition 3.1
and the subspace channel Chs : X̃ → Ỹ defined in Definition 3.2 are equivalent
in terms of evaluating the mutual information between the input and output.
More precisely, for every input distribution for the channel Chs there is an
input distribution for the channel Chm such that I(X ;Y ) = I(ΠX ; ΠY ) and
vice versa. As a result, these channels have the same capacity Cm = Cs.

3. For simplicity, we restrict this definition to only two source nodes. However, general-
ization to s sources is straightforward.
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For the proof of Theorem 3.1 refer to Appendix 3.A and for more discussion
refer to Section 3.3.1.

Theorem 3.2. For the channel Chm : X → Y defined in Definition 3.1, the
capacity is given by

Cm = i∗(L − i∗) log q + o(1), (3.14)

where i∗ = min
[
M,N, ⌊L2 ⌋

]
, and o(1) tends to zero as q grows.

Theorem 3.2 is proved in Section 3.3.2. The result of Theorem 3.2 is for
large alphabet regime 4. The following result, Theorem 3.3, is valid for a finite
field size, and therefore is a non-asymptotic result.

Theorem 3.3. Consider the channel Chm : X → Y defined in Definition 3.1.
There exists a finite number q0 such that for q > q0 the optimal input distribu-
tion is non-zero only for matrices of rank in the set

A =
{
min

[
(L−N)+,M,N,L

]
, . . . ,min [M,N,L]

}
. (3.15)

Moreover, for all values of q the optimal input distribution is uniform over all
matrices X of the same rank, and the total probability allocated to transmitting
matrices of rank i equals

α∗
i , P [rank(X) = i] = 2−Cmqi(L−i) [1 + o(1)] , ∀i ∈ A. (3.16)

The proof of Theorem 3.3 is presented in Section 3.3.3 and Section 3.3.4,
and uses standard techniques from convex optimization, as well as large field
size approximations. Note that, the same coding scheme at the source simulta-
neously achieves the capacity for all receivers with the same channel parameters
(i.e., values ofM ,N and L). That is, each receiver is able to successfully decode.

The result of Theorem 3.3 for the active set of input dimensions is not
asymptotic in q. However, it is not easy to analytically find the minimum
value of q0 such that the theorem statement holds for all q > q0. Theorem 3.4
demonstrates how we can analytically characterize q0 given in Theorem 3.3
for the case L > N + min[M,N ]. The proof of Theorem 3.4 is presented in
Section 3.3.5.

Theorem 3.4. If L > N +min[M,N ], then the capacity of Chm for q ≥ q0 is
given by

Cm =
i∗∑

l=0

ψ(N, l)

[
i∗

l

]
q−Ni∗ log

( [
L
l

]
[
i∗

l

]
)

= i∗(L− i∗) log q − 1{N≤M}(L− i∗)
log q

q
+ q−1 + o(q−1), (3.17)

4. We gratefully acknowledge the contribution of an anonymous reviewer who gave an
alternate proof, which focused on the asymptotic q regime. We have included that proof in
Section 3.3.2. Our original proof was based partially on the proof now given for Theorem 3.3.
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where 1{·} is the indicator function and q0 is the minimum field size that sat-
isfies the set of inequalities

ǫq0(l)− ǫq0(i∗)
(L−N − i∗)(i∗ − l) ≤ log q0, ∀l : 0 ≤ l ≤ (i∗ − 1), (3.18)

and
ǫq0(l)− ǫq0(i∗)
i∗(l − i∗) ≤ log q0, ∀l : (i∗ + 1) ≤ l ≤ m, (3.19)

where i∗ = min[M,N ] and

ǫq(l) ,

min[N,l]∑

dy=0

ψ(N, dy)

[
l

dy

]
q−Nl log

([L
dy

]
[
i∗

dy

]
)
−min[N, l](L− i∗) log q. (3.20)

The capacity is achieved by sending matrices X such that their rows span dif-
ferent i∗-dimensional subspaces.

Moreover, asymptotically in L, we can show that qN−M+1
0 ≥ 5M2 is suffi-

cient for the case M ≤ N and q0 ≥ NL is sufficient if M > N .

Theorems 3.2 and 3.3 state that the capacity behaves as i∗(L − i∗) log q,
for sufficiently large q. However, numerical simulations indicate a very fast
convergence to this value as q increases. Figure 3.1 depicts the capacity for small
values of q, calculated using the Differential Evolution toolbox for MATLAB
[39]. This shows that the result is relevant at much lower field size than dictated
by the formalism of the statement of Theorems 3.2 and 3.3.

Figure 3.1 – Numerical calculation of the capacity for small values of q and
M = 11, N = 7. The dotted line depicts i∗(L− i∗).

From Theorem 3.3, we can derive the following guidelines for non-coherent
network code design.
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3.2.1.1 Choice of Subspaces

The optimal input distribution uses subspaces of a single dimension equal
to min[M,N ] for L ≥ min[M,N ] +N . As L reduces, the set of used subspaces
gradually increases, by activating one by one smaller and smaller dimensional
subspaces, until, for L ≤ N , all subspaces are used with equal probability 5.
Figure 3.2 pictorially depicts this gradual inclusion of subspaces.

This behavior is different from the result of [26] where all the subspaces up
to dimension equal to the min-cut appeared in the optimal input distribution.
This difference is due to the different channel model used in our work and in
[26].

1 3 42 1 3 42 1 3 42

Figure 3.2 – Probability mass function of the active subspace dimensions for
channel parameters M = 4, N = 3. As it is shown in Theorem 3.3 there exist
three different regimes.

3.2.1.2 Values of M and N

For a given and fixed packet length L, the optimal value ofM and N equals
M = N = ⌊L2 ⌋ (optimality is in the sense of minimum requirement in order
to obtain the maximum capacity for this L). For fixed L and M , the optimal
value of N equals N = min[M, ⌊L2 ⌋]. For fixed L and N , the optimal value of

M equals M = min[N, ⌊L2 ⌋].

Table 3.1 – Information loss from using coding vectors when N =M .

L ≤ 2M L > 2M

Cm −Rcv o(1) o(1) = (i∗ − 1)(L − i∗) log q
q +O(q−1)

5. Note that although all the subspaces are equiprobable, we have distinct values for α∗
i

since there are different number of subspaces of each dimension.
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3.2.1.3 Subspace Coding vs. Coding Vectors

One of the aims of this work was to find the regimes in which the using of
coding vectors [20] is far from optimal. Table 3.1 summarizes this difference. As
we see from the Table 3.1 subspace coding does not offer benefits as compared
to the coding vectors approach for large field size 6.

Table 3.1 is calculated as follows. The achievable rate Rcv using coding
vectors equals

Rcv , P [rank(Hk) = k]× k(L− k) log q, (3.21)

where 0 < k ≤ M is the number of packets in each generation, i.e., each
packet includes a coding vector of length k and L − k information symbols.
Equivalently, we assume that we use k out of the M possible input packets.
The matrix Hk is the k × k sub-matrix of H that is applied over the input
packets. To calculate Rcv, we know that

P [rank(Hk) = k] =

k−1∏

i=0

(1− q−k+i) = 1− q−1 +O(q−2). (3.22)

Assume we choose k = i∗, then we have

Rcv = i∗(L− i∗) log q − i∗(L− i∗) log q
q

, (3.23)

where i∗ = min
[
M,N, ⌊L2 ⌋

]
. For the capacity Cm we use the large q-regime

as considered in Theorem 3.2 for the case L ≤ 2M and the finite q-regime of
Theorem 3.4 for the case L > 2M .

3.2.2 Extension to the packet erasure networks

After the error free single source scenario, we consider packet erasure net-
works, and calculate an upper and lower bound on the capacity for this case.
The work in [26], which is the closest to ours, did not consider erasures but
instead constant-dimension additive errors. In practice, depending on the ap-
plication, either of the models might be more suitable: for example, if NC is
deployed at an application layer, then, unless there exist malicious attackers,
packet erasures are typically used to abstract both the underlying physical
channel errors, as well as packet dropped at queues or lost due to expired
timers.

We model the erasures in the network as an end-to-end phenomenon which
randomly erases packets according to some probability distribution. Formally,
we rewrite the channel defined in (3.3) as

Y [t] = E[t]H [t]X[t], (3.24)

6. In the algebraic framework of [1], the lifting construction used coding vectors, and they
showed that this construction achieves almost the same rates as optimal algebraic subspace
codes. However, we demonstrate in this chapter that this phenomenon occurs for longer
packet lengths using an information-theoretic framework.
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where H [t] ∈ FM×M
q is assumed to be a square channel matrix and E[t] ∈

FM×M
q is a diagonal random matrix whose elements on its diagonal are either

1 or 0. We also assume that q is large, and as a result the transfer matrix is
full rank with high probability. Moreover, we consider the case where M ≤ L

2 ,
i.e. the matrix X[t] is a fat matrix. Recall that we can think of the rows of
this matrix as packets send by the source, and the rows of the Y [t] matrix as
packets received at the destination.

Note that in equation (3.24) all of the erasure events are captured by the
erasure matrix E[t]. Moreover, the erasure pattern is important only up to
determining the number of packets that the destination receives, since the
transfer matrix H [t] is unknown and distributed uniformly at random over all
full rank matrices. Thus, we model the number of received packets (number of
non-zero elements on the diagonal of E[t]) as a random variable N (instead of
a fixed N) which takes values in 0 ≤ N ≤ M according to some distribution
that depends on the packet erasures in the network. In this case the capacity
is

Ce = max
PX

I(X ;Y , N). (3.25)

We can then use our previous result, Theorem 3.2, to find an upper and lower
bound for the capacity Ce when we have packet erasure in the network, as the
following Theorem 3.5 describes.

Theorem 3.5. Let the number of received packets at the destination be a ran-
dom variable N defined over the set of integers 0 ≤ N ≤M . Also, assume that
M ≤ L

2 . Then for large q, we have the following upper and lower bound for the
capacity Ce,

µ1(L −M) log q ≤ Ce ≤ µ1

(
L− µ2

µ1

)
log q, (3.26)

where µ1 , EN [N ] and µ2 , EN

[
N2
]
.

For the proof of Theorem 3.5 and more discussion refer to Appendix 3.B.

Remark 3.1. Note that because we do not necessarily employ full-rank matri-
ces X, it is possible that although some packets are erased at the destination,
the received packets still span a matrix of the same rank as X; thus erasing
packets is not equivalent to erasing dimensions.

3.2.3 Multiple Sources

In several practical applications, such as sensor networks, data sources are
not necessarily co-located. We thus extend our work to the case where mul-
tiple not co-located sources transmit information to a common receiver. In
particular, we consider the non-coherent MAC introduced in Definition 3.3,
and characterize the capacity region of this network for the case of two sources
with M1 and M2 input packets and packet length L > 2(M1+M2). We believe
that this technique can be extended to more than two sources.
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To find the rate region of the matrix multiple access channel Chm−MAC,
we first show that the two channels Chm−MAC and Chs−MAC are equivalent, as
stated in Theorem 3.6. We then find the rate region of the subspace multiple
access channel Chs−MAC which is stated in Theorem 3.7. To avoid repetition,
we state Theorem 3.6 without a proof because its proof is very similar to that
of Theorem 3.1.

Theorem 3.6. The matrix MAC channel Chm−MAC defined in Definition 3.3
is equivalent to the subspace MAC channel Chs−MAC defined in Definition 3.4
in the sense that the optimal rate region for these two channels is the same.

Theorem 3.7. For L > 2(M1 + M2), the asymptotic (in the field size q)
capacity region of the MAC Chm−MAC introduced in Definition 3.3 is given by

R∗ , convex hull
⋃

(d1,d2)∈D∗

R(d1, d2), (3.27)

where

R(d1, d2) ,
{
(R1,R2) : Ri ≤ Ri(d1, d2), i = 1, 2

}
, (3.28)

Ri(d1, d2) , di(L− d1 − d2) log q, i = 1, 2, (3.29)

and

D∗ ,
{
(d1, d2) : 0 ≤ di ≤ min[N,Mi],

0 ≤ d1 + d2 ≤ min[N,M1 +M2]
}
. (3.30)

We note that the rate region forms a polytopes that has the following num-
ber of corner points (see Corollary 3.1 in Section 3.4)

min
[
M1, (N −M2)

+
]
+min

[
M2, (N −M1)

+
]
+ 2− 1{N≥M1+M2}. (3.31)

The rate regionR∗ is shown in Figure 3.3 for a particular choice of parameters.
The proof of this theorem is provided in Section 3.4. We first derive an

outer bound by deriving two other bounds: a cooperative bound and a coloring
bound. For the coloring bound, we utilize a combinatorial approach to bound
the number of distinguishable symbol pairs that can be transmitted from the
sources to the receiver. We then show that a simple scheme that uses coding
vectors achieves the outer bound. We thus conclude that, for the case of two
sources when L

2 > M1 +M2, use of coding vectors is (asymptotically) optimal.

3.3 The Channel Capacity: Single Source Scenario

In this section we will prove Theorem 3.2, Theorem 3.3, and Theorem 3.4.
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Figure 3.3 – The MAC region R∗ for parameters M1 = 4, M2 = 3, N = 6,
L = 14.

3.3.1 Equivalence of the Matrix Channel Chm and the Subspace
Channel Chs

For convenience let us rewrite the channel (3.3) again 7

Y = HX. (3.32)

To find the capacity of the above channel we need to maximize the mutual
information between the input and the output of the channel with respect to
the input distribution PX . Since the rows of H are chosen independently of
each other, assuming that a matrix X = x has been transmitted, we can think
of the rows of the received matrix Y as chosen independently from each other,
among all the possible vectors in the row span of x. The independence of rows
of Y allows us to write the conditional probability of Y given X, referred to
as the channel transition probability, as follows

PY |X(y|x) =





q−N dim(〈x〉) 〈y〉 ⊑ 〈x〉 ,

0 otherwise,
(3.33)

where x ∈ X = FM×L
q , and y ∈ Y = FN×L

q .

7. In the rest of the chapter we will omit for convenience the time index t.
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The mutual information I(X ;Y ) between X and Y is a function of PX(x)
and PY |X(y|x) that can be expressed as

I(X;Y ) =
∑

x∈X ,y∈Y

PX(x)PY |X(y|x) log
(
PY |X(y|x)
PY (y)

)
. (3.34)

It is clear from (3.33) that PY |X(y|x1) = PY |X(y|x2) for all x1,x2 ∈ X such
that 〈x1〉 = 〈x2〉 which reveals symmetry for the channel Chm. We exploit this
symmetry to show that Cm = Cs as it is stated in Theorem 3.1 and proved in
Appendix 3.A.

The proof of Theorem 3.1 determines how we can map an input distribu-
tion of Chs to an input distribution for Chm that achieves the same mutual
information. The input distribution PX(x) should be chosen such that we have

∑

x∈X :〈x〉=πx

PX(x) = PΠX
(πx). (3.35)

One simple way to do this is to put all the probability mass of πx on one matrix
x such that 〈x〉 = πx.

3.3.2 Upper and Lower bound for the Capacity of Chm

Here, we state the proof of Theorem 3.2 by giving upper and lower bounds
for the capacity that differ in o(1) bits, which vanishes as q →∞.

Let Cm(N,M,L) denote the capacity of the channel Chm. Let Cf-m(N,M,L)
denote the capacity of the channel Y = AX where A ∈ FN×M

q is a full-rank

matrix chosen uniformly at random among all the full-rank matrices in FN×M
q .

Then, we have the following lemma.

Lemma 3.1. We can bound Cm(N,M,L) from above and below as follows

Cm(h, h, L) ≤ Cm(N,M,L) ≤ Cf-m(N,M,L) ≤ Cf-m(h, h, L), (3.36)

where h = min[M,N ].

Proof. Let UN×M ∈ FN×M
q denote a generic random matrix chosen uniformly

at random and independently from any other variable. Similarly, let AN×M ∈
FN×M
q denote a generic full-rank matrix chosen uniformly at random among

all such full-rank matrices and independent from any other variable. (Note that
each new instance of such a matrix in the same equation denotes a different
random variable which is independent from the other random variables.)

Since the channel Y = AN×MX is statistically equivalent to the channel
Y = AN×NAN×MAM×MX, we have, by the data processing inequality, that
Cf-m(N,M,L) ≤ Cf-m(h, h, L).

Using the same argument, since the channel Y = UN×MX is equivalent to
the channel Y = UN×NAN×MX if N ≥ M , and is equivalent to the channel
Y = AN×MUM×MX if N ≤M we have Cm(N,M,L) ≤ Cf-m(N,M,L).
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To obtain the lower bound we proceed as follows. Let us choose X =[
Ih

0

]
X and Y = [Ih 0]Y , where Y = UN×MX. Then we can write

Y = [Ih 0]UN×M

[
Ih

0

]
X = Uh×hX, (3.37)

where Uh×h is the upper left h×h sub-matrix of UN×M . Thus, again the data
processing inequality implies that Cm(h, h, L) ≤ Cm(N,M,L).

Lemma 3.2. For Cm(N,M,L) we have

Cm(N,M,L) ≤ i∗(L− i∗) log q + o(1), (3.38)

where i∗ = min[M,N, ⌊L2 ⌋].

Proof. By Lemma 3.1 we have

Cm(N,M,L) ≤ Cf-m(h, h, L)

(a)
= log

(
h∑

i=0

[
L

i

])

(b)
= i∗(L− i∗) log q + o(1), (3.39)

where (a) follows from [26, Corollary 2] and (b) follows from Lemma 2.1.

Lemma 3.3. For Cm(N,M,L) we have

Cm(N,M,L) ≥ i∗(L− i∗) log q − o(1), (3.40)

where i∗ = min[M,N, ⌊L2 ⌋].

Proof. For every subspace Π ∈ Gr(L, i∗), let RREF(Π) ∈ Fi∗×L
q be a matrix

in reduced row echelon form such that Π = 〈RREF(Π)〉. Choose X =
[
Ii∗

0

]
×

RREF(ΠX) ∈ FM×L
q , where ΠX is chosen uniformly at random from Gr(L, i∗).

Define the random variable Q = 1{rank(Y )=i∗}. Note that ΠY = ΠX when
Q = 1. Thus, we have H(ΠY |ΠX , Q = 1) = 0 and H(ΠY |Q = 1) = H(ΠX) =
log
[
L
i∗

]
≥ i∗(L− i∗) log q. Then, it follows that

Cm(N,M,L)
(a)

≥ Cm(h, h, L)

(b)

≥ I(ΠX ; ΠY )

(c)
= I(ΠX ; ΠY , Q)

= I(ΠX ;Q) + I(ΠX ; ΠY |Q)

≥ P [Q = 1]I(ΠX ; ΠY |Q = 1)

≥ P [Q = 1]i∗(L− i∗) log q, (3.41)
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where (a) is due to Lemma 3.1, (b) follows follows from Theorem 3.1, and (c)
holds since Q is a deterministic function of ΠY . Now, note that we can write

P [Q = 1] = P [rank(Uh×hX) = i∗]

= P
[
rank

(
Uh×h

[
Ii∗

0

])
= i∗

]

= P [rank(Uh×i∗) = i∗]

≥ 1− i∗

qk−i∗+1

≥ 1− i∗

q
, (3.42)

and thus we obtain the desired result.

Combining Lemma 3.2 and Lemma 3.3 recovers Theorem 3.2.

3.3.3 The Optimal Solution: General Approach

Generally, we are interested in finding the capacity and input distribution
of Chm exactly. It is shown in Theorem 3.1 that instead of the channel Chm
we can focus on the channel Chs. Thus, we are interested in optimizing the
following quantity

I(ΠX ; ΠY ) =
∑

πx∈X̃ ,

πy∈Ỹ

PΠX
(πx)PΠY |ΠX

(πy|πx) log
(
PΠY |ΠX

(πy|πx)
PΠY

(πy)

)
. (3.43)

Remember that X̃ = Sp(L,M) and Ỹ = Sp(L,N).

The following lemma states that the optimal solution for the channel Chs
should be uniform over all subspaces with the same dimension, as it is intu-
itively expected from the symmetry of the channel.

Lemma 3.4. The input distribution that maximizes I(ΠX ; ΠY ) for Chs is the
one which is uniform over all subspaces having the same dimension.

Lemma 3.4 shows that the optimal input distribution can be expressed as

P [ΠX = πx] =
αdx[
L
dx

] , (3.44)

where dx = dim(πx), αdx
= P [dim(ΠX) = dx], and we have

∑min[M,L]
dx=0 αdx

= 1.
We can then simplify I(ΠX ; ΠY ) as stated in the following lemma.
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Lemma 3.5. Assuming an optimal input probability distribution of the form
in (3.44), the mutual information I(ΠX ; ΠY ) can be simplified to

I(ΠX ; ΠY ) =−
min[M,L]∑

dx=0

αdx
Ndx log q

−
min[M,L]∑

dx=0

αdx
q−Ndx

min[N,dx]∑

dy=0

ψ(N, dy)

[
dx
dy

]
log(f(dy)), (3.45)

where

f(dy) ,
PΠY

(πy)

ψ(N, dy)
=

1[
L
dy

]
min[M,L]∑

dx=dy

[
dx
dy

]
q−Ndxαdx

. (3.46)

Lemmas 3.4 and 3.5 show that the problem of finding the optimal input
distribution for the channel Chs is reduced to finding the optimal choice for
αi, i = 0, . . . ,min[M,L]. We know that the mutual information is a concave
function with respect to PΠX

(πx)’s. Observation 3.1 implies that because (3.44)
is a linear transformation from PΠX

(πx)’s to αi’s, as a result the mutual infor-
mation I(ΠX ; ΠY ) is also concave with respect to αi’s [40].

Observation 3.1. Let g(x) be a concave function and let x = h(z) be a linear
transform from z to x. Then g(h(z)) is also a concave function.

Using Observation 3.1, we know that the mutual information is a concave
function with respect to αi’s. This allows us to use the Kuhn-Tucker theorem
[40] to solve the convex optimization problem. According to this theorem, the
set of probabilities α∗

i , 0 ≤ i ≤ min[M,L], maximize the mutual information if
and only if there exists some constant λ such that





∂I(ΠX ;ΠY )
∂αk

∣∣∣
α∗

= λ ∀k : α∗
k > 0,

∂I(ΠX ;ΠY )
∂αk

∣∣∣
α∗
≤ λ ∀k : α∗

k = 0,

(3.47)

where
∑min[M,L]

i=0 α∗
i = 1, 0 ≤ k ≤ min[M,L], and α∗ is the vector of the

optimum input probabilities of choosing subspaces of certain dimension,

α∗ =
[
α∗
0 · · · α∗

min[M,L]

]T
. (3.48)

Lemma 3.6. By taking the partial derivative of the mutual information given
in (3.45) with respect to αk, we have

I ′k ,
∂I(ΠX ; ΠY )

∂αk

= −Nk log q −
min[N,k]∑

dy=0

ψ(N, dy)

[
k

dy

]
q−Nk log (f(dy))− log e. (3.49)
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Multiplying both sides of (3.49) by αk and summing over k we get

I − log e =

min[M,L]∑

k=0

αkI
′
k. (3.50)

By choosing the optimal values αk = α∗
k for 0 ≤ k ≤ min[m,T ], the RHS

becomes λ, and the mutual information increases to Cs. So we may write λ =
Cs − log e.

3.3.4 Solution for Large Field Size

In this subsection, we focus on large size fields, q ≫ 1. This assumption
allows us to use some approximations to simplify the conditions in (3.47).
Assuming large q we can rewrite (3.49) as follows

I ′k = −Nk log q − log e

−
min[N,k]∑

dy=0

(
1 +O(q−1)

)
q−(N−dy)(k−dy) log (f(dy)) , (3.51)

where we have used Lemma 2.1 and Lemma 2.6. Using similar approximations,
log f(dy) defined in (3.46) can be approximated as

log (f(dy)) = −dyL log q +O(q−1)

+ log




min[M,L]∑

dx=dy

q−(N−dy)dxαdx


 . (3.52)

Then we have the following result, Lemma 3.7.

Lemma 3.7. The dominating term in the summation in (3.51) is the one
obtained for dy = min[N, k].

From the proof of Lemma 3.7 written in Appendix 3.A, we can also see that
the remaining terms in the summation of (3.51) are of order o(1), so we can
write

I ′k = [Lmin[N, k]−Nk] log q + o(1)︸︷︷︸
ǫq(k)

− log e

− log




min[M,L]∑

dx=min[N,k]

q−[N−min[N,k]]dxαdx


 . (3.53)

Assuming that the expression inside the log(·) function in (3.53) is not zero
for every 0 ≤ k ≤ min[M,L], we can rewrite the Kuhn-Tucker conditions as

min[M,L]∑

dx=min[N,k]

q−[N−min[N,k]]dxαdx
≥ 2−Cs+o(1)q[Lmin[N,k]−Nk], (3.54)
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where the inequality holds with equality for all k with α∗
k > 0.

Let δ , min[M,L] and define the (δ+ 1)× (δ+ 1) matrix A with elements

Aij ,





q−[N−min[N,i]]j min[N, i] ≤ j ≤ δ,

0 otherwise.
(3.55)

We also define the column vector b with elements bi , q[Lmin[N,i]−Ni] for
0 ≤ i ≤ δ. Note that for convenience the indices of matrix A and vector b
start from 0. Using these definitions, we are able to rewrite the Kuhn-Tucker
conditions in the matrix form as

Aα∗ � 2−Cs+o(1)b. (3.56)

In the following, we consider two cases for δ ≤ N and δ > N , and find α∗ for
each of them, separately.
First case: δ ≤ N . In this case we can explicitly write the matrix A and
vector b as

A =




1 q−N · · · q−(δ−1)N q−δN

0 q−(N−1) · · · q−(δ−1)(N−1) q−δ(N−1)

0 0 · · · q−(δ−1)(N−2) q−δ(N−2)

...
...

. . .
...

...

0 0 · · · q−(δ−1)(N−δ+1) q−δ(N−δ+1)

0 0 · · · 0 q−δ(N−δ)




, (3.57)

and
b =

[
1 q(L−N) · · · qδ(L−N)

]T
. (3.58)

The fact that the expression inside the log(·) function in (3.53) is non-zero
for k = δ, forces α∗

δ to be positive. Thus the last row of the matrix inequality
in (3.56) should be satisfied as an equality. Therefore,

α∗
δ =

qδ(L−N)

q−δ(N−δ)
2−Cs+o(1) = qδ(L−δ)2−Cs+o(1). (3.59)

Now we use induction to show that the optimal solution has the form

α∗
i =





qi(L−i)2−Cs+o(1) : κ ≤ i ≤ δ,

0 : 0 ≤ i < κ,
(3.60)

where we will determine κ later.
Let us fix l and assume that α∗

i = qi(L−i)2−Cs+o(1) for 0 ≤ l < i ≤ δ. Then
for α∗

l we can write

Allα
∗
l +

δ∑

j=l+1

q−(N−l)jα∗
j ≥ ql(L−N)2−Cs+o(1), (3.61)
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or equivalently

Allα
∗
l ≥ql(L−N)2−Cs+o(1) −

δ∑

j=l+1

q−(N−l)jα∗
j

=ql(L−N)2−Cs+o(1)


1−

δ∑

j=l+1

q(L−N−j)(j−l)


 . (3.62)

We can use induction for one step more to show that α∗
l is of the desired form

(3.60) if the previous expression is satisfied with equality. This is true if we have

1 −∑δ
j=l+1 q

(L−N−j)(j−l) ≥ 0, or equivalently (assuming large q) if we have

(L −N − j)|j=l+1 < 0. So we can conclude that we should have (L − N)+ ≤
l ≤ δ. It can be easily verified that for i < (L−N)+ the Kuhn-Tucker equation
for α∗

i satisfies the strict inequality so α∗
i = 0 for i < min[(L − N)+, δ]. The

above argument results in a solution of the following form for the case δ ≤ N

α∗
i =





qi(L−i)2−Cs+o(1) : min [(L−N)+, δ] ≤ i ≤ δ,

0 : 0 ≤ i < min [(L−N)+, δ] .
(3.63)

Second case: δ > N . We now write matrix A and vector b as

A =




1 q−N · · · · · · · · · · · · q−δN

0 q−(N−1) · · · · · · · · · · · · q−δ(N−1)

...
. . .

. . .
...

...
...

...

0 · · · 0 q−(N−1) q−N · · · q−δ

0 · · · 0 0 1 · · · 1
...

. . .
...

...
...

. . .
...

0 · · · 0 0 1 · · · 1




, (3.64)

and

b =
[
1 q(L−N) · · · q(N−1)(L−N) qN(L−N) qN(L−N−1) · · · qN(L−δ)

]T
.

(3.65)
The last δ − N + 1 rows of A are the same while bi is decreasing with i for
i ≥ N . Thus, the last δ −N inequalities are strict and therefore,

α∗
N+1 = · · · = α∗

δ = 0. (3.66)

The remaining equations can simply be reduced to the first case. Define

Ã =




1 q−N · · · q−(N−1)N q−N2

0 q−(N−1) · · · q−(N−1)(N−1) q−N(N−1)

0 0 · · · q−(N−1)(N−2) q−N(N−2)

...
...

. . .
...

...
0 0 · · · q−(N−1) q−N

0 0 · · · 0 1




, (3.67)



3.3. The Channel Capacity: Single Source Scenario 43

and
b̃ =

[
1 q(L−N) · · · qN(L−N)

]T
. (3.68)

The remaining conditions in this case can be written as

Ãα∗ � 2−Cs+o(1)b̃, (3.69)

which is exactly similar to (3.56), for δ = N . Therefore, the optimal solution
for the first case will also satisfy these conditions, i.e.,

α∗
i =





qi(L−i)2−Cs+o(1) κ ≤ i ≤ N,

0 0 ≤ i < κ,
(3.70)

with κ = min[(L−N)+, N ]. Summarizing (3.66) and (3.70), we can obtain the
optimal solution for this regime, as

α∗
i =





0 N < i ≤ δ,
qi(L−i)2−Cs+o(1) κ ≤ i ≤ N,
0 0 ≤ i < κ,

(3.71)

where κ = min[(L − N)+, N ]. This completes the proof of Theorem 3.3. By
normalizing α∗

i to 1 we can also obtain an alternative proof to Theorem 3.2.

Remark 3.2. To characterize the exact value of q0 one have to consider the
exact form of the set of equations given in (3.62) (for each l) which are as
follows,

Allα
∗
l ≥ ql(L−N)2−Cs+ǫq(l)


1−

δ∑

j=l+1

q(L−N−j)(j−l)2[ǫq(j)−ǫq(l)]


 , (3.72)

where ǫq(·) is defined in (3.20).
Although it is hard to find q0 exactly, it is possible to show that there exists

finite q0 such that result of Theorem 3.3 holds for. This can be done by solving
above equations assuming that ǫq(k) is zero for every k (assuming q ≫ 1).
Then, it can be observed that the RHS of (3.62) are either greater or less than
zero. Now by assuming finite but large enough q and considering the exact form
of (3.62) we have some small perturbations that cannot change the sign of RHS
of (3.62) so we are done.

3.3.5 Proof of Theorem 3.4

Let ǫq(k) denotes the error term in (3.53). We can easily write the exact
expression for ǫq(k) which is as follows

ǫq(k) =−
rk∑

dy=0

ψ(N, dy)

[
k

dy

]
q−Nk log




min[M,L]∑

dx=dy

αdx

[
dx

dy

]
[
L
dy

]q−Ndx




+ log




min[M,L]∑

dx=rk

qrk(dx−rk)−Ndxαdx


− rk(L− rk) log q, (3.73)
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where rk = min[N, k].
We consider the case where L > N + min[M,N ] so Theorem 3.3 implies

that for the optimal input distribution we have αi∗ = 1 where i∗ = min[M,N ]
and q > q0. Then we can simplify ǫq(k) more and write

ǫq(k) =

rk∑

dy=0

ψ(N, dy)

[
k

dy

]
q−Nk log

([L
dy

]
[
i∗

dy

]
)
− rk(L− i∗) log q, (3.74)

where we also use Lemma 2.7 in the above simplification.
To find q0, the minimum value of q that the result of Theorem 3.4 is valid

for, we should consider the exact form of (3.62) and check that the RHS of
(3.62) is less than or equal to zero for 0 ≤ l ≤ (i∗− 1). So from (3.62) for every
0 ≤ l ≤ (i∗ − 1) we may write

[
1− q(L−N−i∗)(i∗−l)2[ǫq(i

∗)−ǫq(l)]
]
≤ 0, (3.75)

or equivalently

ǫq0(l)− ǫq0(i∗)
(L−N − i∗)(i∗ − l) ≤ log q0, ∀l : 0 ≤ l ≤ (i∗ − 1). (3.76)

Using a similar argument we should have also

ǫq0(l)− ǫq0(i∗)
i∗(l − i∗) ≤ log q0, ∀l : (i∗ + 1) ≤ l ≤M. (3.77)

From (3.71) for the capacity Cs we have Cs = i∗(L − i∗) log q + ǫq(i
∗).

Evaluating (3.74) at k = i∗ we have

ǫq(i
∗) =

i∗∑

dy=0

ψ(N, dy)

[
i∗

dy

]
q−Ni∗ log

([L
dy

]
[
i∗

dy

]
)
− i∗(L − i∗) log q, (3.78)

which results in the capacity stated in the assertion of Theorem 3.4.

Remark 3.3. We derive a sufficient condition on the minimum size of q to
satisfy the set of conditions stated in (3.76) and (3.77). Using this sufficient
condition we explore the behavior of q0 as L→∞.

For k 6= i∗ we can write

ǫq(k)
(a)

≤ 4

rk∑

dy=0

q−(N−dy)(k−dy) log
(
4qdy(L−i∗)

)
− rk(L− i∗) log q

≤ 8 + 4rkq
−(max[N,k]−min[N,k]+1) (2 + (rk − 1)(L− i∗) log q)

(b)

≤ 8(1 + rk) +

(
4rk(rk − 1)(L− i∗) log q

q(max[N,k]−min[N,k]+1)

)
, (3.79)

where (a) follows from (2.24) and (2.29), and in (b) we use the fact that k 6= i∗.
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On the other hand, for k = i∗ we can write

ǫq(i
∗) ≥ ψ(N, i∗)q−Ni∗ log

[
L

i∗

]
− i∗(L − i∗) log q

(a)

≥ −(i∗)2(L− i∗) log q

qN−i∗+1
, (3.80)

where (a) follows from (2.24) and (2.29).
Let us consider two cases. First, we assume that M ≤ N so i∗ = M . To

find a sufficient condition for q0 we have to only consider conditions given in
(3.76). Using (3.79) and (3.80) and assuming that L → ∞ we should have
log q0 ≥ 5M2q−N+M−1

0 log q0, or equivalently qN−M+1
0 ≥ 5(i∗)2.

For the second case we have M > N which means i∗ = N . Here, using a
similar argument to the one given above for the first case we can show that
conditions (3.76) give some constant q0 as L → ∞. However, the conditions
(3.77) give a sufficient condition for q0 which grows as L → ∞. Now, using
(3.77), (3.79), and (3.80) and assuming that L → ∞, a sufficient condition
for q0 would be log q0 ≥ 4NLq−2

0 log q0 + NLq−1
0 log q0. For large L for the

sufficient condition we have q0 ≥ i∗L.

3.4 Multiple Sources Scenario: The Rate Region

The goal of this section is to characterize R, the set of all achievable rate
pairs (R1,R2) for two user communication over the multiple access channel
Cm−MAC described in Definition 3.3. More precisely, we will show that R = R∗.
In order to do this, we first formulate a mathematical model for this channel.
Then, we present an achievability scheme, to show that R∗ is achievable, i.e.,
R∗ ⊆ R. In the next subsection we prove the optimality of this scheme and
show that R ⊆ R∗.

The proof of the converse part of the theorem is based on two outer bounds,
namely, a cooperative bound and a coloring bound. For the coloring bound,
we utilize a combinatorial argument to bound the number of distinguishable
symbol pairs that can be transmitted from the two sources to the destination.
This bound allows us to restrict the effective input alphabets of the sources
to subsets of the original alphabets, with significantly smaller size. We can
then easily bound the capacity region of the network using the restricted input
alphabet.

The transition probability of the channel given by Definition 3.3, PY |X1X2
,

can be written as

PY |X1X2
(y|x1,x2) =





q−N dim(〈x1〉+〈x2〉) 〈y〉 ⊑ 〈x1〉+ 〈x2〉 ,

0 otherwise.
(3.81)

Our first result, stated in Theorem 3.6, is that the multiple access matrix
channel described in Definition 3.3 is equivalent to the “subspace” channel
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Chs−MAC described in Definition 3.4, that has subspaces as inputs and outputs.
So to characterize the optimal rate region of Chm−MAC, we can focus on finding
the optimal rate region of Chs−MAC. We will use this equivalence in the rest of
this section.

We know from [38] that the rate region of the multiple access channel
Chs−MAC is given by the closure of the convex hull of the rate vectors satisfying

RS ≤ I(ΠXS ; ΠY |ΠXSc ) ∀S ⊆ [1 : s], (3.82)

for some product distribution PΠX1
(π1) · · ·PΠXs

(πs). Note thatRS =
∑

i∈S Ri,
where Ri is the transmission rate of the ith source, ΠXS = {ΠXi

: i ∈ S} and
Sc is the complement set of S.

3.4.1 Achievability Scheme

In this subsection we illustrate a simple achievability scheme for the corner
points of the rate region defined in Theorem 3.7. The remaining points in the
rate region can be achieved using time-sharing.

For given (d1, d2) ∈ D∗, define the following subspace code-books

C̃1 ,

{
〈X1〉 : X1 =

[
Id1×d1 0d1×d2 U1

0(M1−d1)×d1
0(M1−d1)×d2

0(M1−d1)×(L−d1−d2)

]}

(3.83)

where U1 ∈ Fd1×(L−d1−d2)
q , and

C̃2 ,

{
〈X2〉 : X2 =

[
0d2×d1 Id2×d2 U2

0(M2−d2)×d1
0(M2−d2)×d2

0(M2−d2)×(L−d1−d2)

]}

(3.84)

where U2 ∈ Fd2×(L−d1−d2)
q .

If the sources transmit messages from these code-books, we have

Y = H1X1 +H2X2

=
[
Ĥ1 Ĥ2 Ĥ1U1 + Ĥ2U2

]
, (3.85)

where Ĥ i captures the first di columns of H i. Therefore, decoding at the
receiver would be just recovering of U1 and U2 given Ĥ1U1+Ĥ2U2, Ĥ1, and
Ĥ2. Since d1 + d2 ≤ N (see 3.30), the matrix [Ĥ1 Ĥ2] is full-rank with high
probability, and therefore the decoder is able to decode U1 and U2.

Note that the achievability scheme uses effectively the coding vectors ap-
proach [20]. This indicates that for L

2 > max[M1 +M2, N ] and large enough q,
the subspace coding and the coding vectors approach achieve the same rate.

3.4.2 Outer bound on the Admissible Rate Region

In the following we will present an outer bound for R, the admissible rate
region of the non-coherent two-user multiple access channel Chm−MAC. Recall
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that by Theorem 3.6 we can focus on the subspace channel Chs−MAC. We first
show in Proposition 3.1 that R ⊆ Rcoop, a cooperative outer-bound. Then
Proposition 3.2 demonstrates that R ⊆ Rcol, a coloring outer-bound. Finally
we show that Rcol ∩ Rcoop ⊆ R, yielding the desired outer-bound R ⊆ R∗

which matches the achievability of Section 3.4.1.
The first outer bound, called cooperating outer bound, is simply obtained

by letting the two transmitters cooperate to transmit their messages to the
receiver, i.e. we assume they form a super-source. Applying Theorem 3.2 for
the non-coherent scenario for the single super-source, the one who controls the
packets of both transmitters, we have the following proposition.

Proposition 3.1. Let L ≥ 2(M1 +M2). Then we have R ⊆ Rcoop where

Rcoop , {(R1,R2) : R1 +R2 ≤ k(L− k) log q} (3.86)

and k = min[M1 +M2, N ].

The rest of this section is dedicated to deriving the second outer bound
which is denoted by Rcol. This bound is based on an argument on the number
of messages per channel use that each user can reliably communicate over the
multiple access channel.

Let (R1,R2) ∈ R be an achievable rate pair for which there exists an
encoding and decoding scheme with block length n and small error probability.
One can follow the usual converse proof of the multiple access channel from
[38] to show that

R1 ≤ I(Πn
X1

; Πn
Y |Πn

X2
) ≤ 1

n

n∑

t=1

I(ΠX1t; ΠY t|ΠX2t),

R2 ≤ I(Πn
X2

; Πn
Y |Πn

X1
) ≤ 1

n

n∑

t=1

I(ΠX2t; ΠY t|ΠX1t), (3.87)

R1 +R2 ≤ I(Πn
X1
,Πn

X2
; Πn

Y ) ≤
1

n

n∑

t=1

I(ΠX1t,ΠX2t; ΠY t).

For each time instance t, denote by C̃i,t, the projection of the code-book used
by user i to its t-th element. For a single source scenario, we have shown in
Section 3.3 that we can use the set Sp(L,M) as our input alphabet for all time
slots, and have the receiver successfully decode the sent messages, and hence,
the user can communicate S(L,M) (see Definition 2.3) distinct messages. For

the multi-source case, C̃i,t is more restricted. The main reason for this is that
the transition probability of the multiple access channel PΠY |ΠX1 ,ΠX2

is of the

form PΠY |ΠX1+ΠX2
. That is, if (π1, π2) ∈ X̃1×X̃2 and (π′

1, π
′
2) ∈ X̃1×X̃2 satisfy

π1 + π2 = π′
1 + π′

2, then P (ΠY |π1, π2) = P (ΠY |π′
1, π

′
2), and hence the receiver

cannot distinguish between the two pairs.
In the following we will discuss this indistinguishability in detail, and derive

the maximum number of distinguishable pairs which can be conveyed through
the channel. In order to do so, we start with some useful definitions and lemmas.
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Definition 3.5. For a fixed π1 ∈ Gr(L, d1), we denote by N (π1, d2, d12) the
set of subspaces of dimension d2 that intersect with π1 at d12 dimensions, i.e.,

N (π1, d2, d12) , {π2 ∈ Gr(L, d2) : dim(π1 ∩ π2) = d12}. (3.88)

It turns out that the cardinality of the set N (π1, d2, d12) depends on π1
only through its dimension, d1 = dim(π1). Therefore, we denote this number
by n(d1, d2, d12), which is characterized in the following lemma.

Lemma 3.8. The cardinality of the set N(π1, d2, d12) is given by

n(d1, d2, d12) = |N(π1, d2, d12)| .= qd12(d1−d12)+(d2−d12)(L−d2). (3.89)

Definition 3.6. For a fixed π1 ∈ Gr(L, d1) and π2 ∈ Gr(L, d2), we define

A(π1, π2) , {π′
2 ∈ Gr(L, d2) : π1 + π′

2 = π1 + π2}. (3.90)

Lemma 3.9. The cardinality of the set A(π1, π2) only depends on the dimen-
sions of the two subspaces and their intersection, d1 = dim(π1), d2 = dim(π2),
and d12 = dim(π1 ∩ π2). Moreover, it can be asymptotically characterized by

a(d1, d2, d12) = |A(π1, π2)| .= qd2(d1−d12). (3.91)

Definition 3.7. For an arbitrary set C̃ ⊆ Sp(L,M), we denote the projection

of C̃ onto the set of d-dimensional Grassmannian C̃(d). Formally,

C̃(d) , C̃ ∩Gr(L, d) = {π ∈ C̃ : dim(π) = d}. (3.92)

For a fixed time instance t, and corresponding subsets C̃1,t and C̃2,t, we
can construct a table with |C̃1,t| rows and |C̃2,t| columns, each row (column)

corresponding to one subspace π1 (π2) in C̃1,t (C̃2,t). In the following, we define
an equivalence relation for the cells of this table.

Definition 3.8. A coloring for a table constructed as above is an assignment
of colors to the cells of the table using a function col : C̃1,t× C̃2,t → N such that
col(π1, π2) = col(π′

1, π
′
2) if and only if π1 + π2 = π′

1 + π′
2.

It is clear that the coloring definition above exactly matches with that of
indistinguishability we discussed before. More precisely, two pairs of subspaces
(π1, π2) and (π′

1, π
′
2) are distinguishable if and only if their corresponding cells

in the table have different colors. The following theorem upper bounds the
cardinality of the subspace sets based on this fact.

Theorem 3.8. For each pair of uniquely distinguishable sets (C̃1,t, C̃2,t) defined
on the input alphabet X̃1 × X̃2 for the multiple access channel Chs−MAC, there
exist integer numbers 0 ≤ δi(t) ≤Mi such that

|C̃i,t|
.
≤ qδi(t)(L−δ1(t)−δ2(t)), i = 1, 2. (3.93)
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Proof. We may drop the time index t in this proof for brevity. For a fixed t,
let δi be the dominating dimension in the set C̃i, i.e.,

δi , argmax
d
|C̃i(d)|, (3.94)

where C̃i(d) is as defined in Definition 3.7. It is clear that

|C̃i| =
∑

d

|C̃i(d)| ≤Mi|C̃i(δi)| .= |C̃i(δi)|, (3.95)

where the last asymptotic equality follows from the fact that Mi is a constant
with respect to the underlying field size q. This means that we may lose only
a constant factor in the code-book size by removing all subspaces from C̃1
(C̃2), except the ones that have dimension δ1 (δ2) . Therefore the loss in the
rate values would be negligible as q grows. Consider the table constructed for
C̃1(δ1) and C̃2(δ2). Let π1 ∈ C̃1(δ1) be a δ1-dimensional subspace, and consider
the corresponding row of the table. We further partition the columns of the

table with respect to π1 into
⋃min[δ1,δ2]

d12=0 C̃2(π1, δ2, d12), where

C̃2(π1, δ2, d12) , {π2 ∈ C̃2(δ2) : dim(π1 ∩ π2) = d12}. (3.96)

We use K(π1, δ2) and K(π1, δ2, d12) to denote the number of different colors in

the row that corresponds to π1 and its intersection with C̃2(π1, δ2, d12), respec-
tively.

Note that C̃2(π1, δ2, d12) ⊆ N (π1, δ2, d12), and therefore the number of dif-
ferent colors that appear in this partition of the row, cannot exceed the num-
ber of colors that could potentially appear if N (π1, δ2, d12) ⊆ C̃2. Recall that
N (π1, δ2, d12) has n(δ1, δ2, d12) elements, which are split into subsets of size
a(δ1, δ2, d12) of the same color. Therefore, for a large field size, the number of
different colors in this partition of the row corresponding to π1, can be upper
bounded as

K(π1, δ2, d12) ≤
n(δ1, δ2, d12)

a(δ1, δ2, d12)

.
= q(δ2−d12)(L−δ1−δ2+d12). (3.97)

Hence,

K(π1, δ2) =

min[δ1,δ2]∑

d12=0

K(π1, δ2, d12)

.
≤

min[δ1,δ2]∑

d12=0

q(δ2−d12)(L−δ1−δ2+d12)

.
= qmax0≤d12≤min[δ1,δ2](δ2−d12)(L−δ1−δ2+d12)

= qδ2(L−δ1−δ2) (3.98)
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where the asymptotic inequality and equality hold for large q. Moreover, the
last equality is based on the assumption L ≥ 2(M1 +M2) ≥ 2(δ1 + δ2) and the
fact that the exponent is a decreasing function of d12 for 0 ≤ d12 ≤ min[δ1, δ2].

It is worth mentioning that this argument holds for each choice of π1 ∈
C̃1(δ1). This means if the first user transmits a δ1-dimensional subspace, the
receiver cannot distinguish more that qδ2(L−δ1−δ2) different symbols. The same
argument holds for a fixed column π2 ∈ C̃2 which yields an upper bound to the
number of distinguishable messages as qδ1(L−δ1−δ2).

Theorem 3.8 essentially upper bounds the single letter mutual information
I(ΠX1t; ΠY t|ΠX2t) for any time instance t. The following proposition summa-
rizes this discussion.

Proposition 3.2. We have R ⊆ Rcol where

Rcol , convex hull
⋃

(d1,d2)∈Dcol

R(d1, d2), (3.99)

in which R(d1, d2) is as defined in (3.28), and

Dcol , {(d1, d2) : 0 ≤ di ≤Mi}. (3.100)

Proof. Using Theorem 3.8, we can upper bound the number of distinguish-
able pairs for each time instance. For a fixed t, let δ1(t) and δ2(t) denote the
dominating dimensions. Therefore, we have

R1 ≤
1

n

n∑

t=1

I(ΠX1t; ΠY t|ΠX2t),

·
≤ 1

n

n∑

t=1

log q[δ1(t)(L−δ1(t)−δ2(t))]

=
1

n

n∑

t=1

δ1(t)(L − δ1(t)− δ2(t)) log q, (3.101)

where 0 ≤ δi(t) ≤Mi for t = 1, . . . , n, and i = 1, 2. Similarly, we have

R2 ≤
1

n

n∑

t=1

δ2(t)(L − δ1(t)− δ2(t)) log q. (3.102)

Therefore,

(R1,R2) ≤
1

n

n∑

t=1

{
δ1(t)(L − δ1(t)− δ2(t)) log q, δ2(t)(L − δ1(t)− δ2(t)) log q

}
. (3.103)

It is clear that the RHS of (3.103) is a convex linear combination of the points
{
δ1(t)(L − δ1(t)− δ2(t)) log q, δ1(t)(L − δ1(t)− δ2(t)) log q

}n

t=1
(3.104)

which are in the region R(δ1(t), δ2(t)). This completes the proof.
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Summarizing Proposition 3.1 and Proposition 3.2, we have R ⊆ Rcoop ∩
Rcol. So, it only remains to prove the following theorem in order to show that
R∗ is an outer bound for the admissible rate region.

Theorem 3.9. We have Rcoop ∩Rcol ⊆ R∗.

Before presenting the proof of the theorem, we give the following two lem-
mas, which help us to characterize the corner points of the region of our interest.

Lemma 3.10. The set of corner points of Rcol is the set of all rate pairs of
the form

(R1,R2) = (R1(d1, d2),R2(d1, d2)) , (3.105)

for some (d1, d2) ∈ D̃, where

D̃ =
{
(0,M2), (1,M2), . . . , (M1,M2),

(M1,M2 − 1), . . . , (M1, 1), (M1, 0)
}
. (3.106)

Lemma 3.11. If Rcol * Rcoop, then any intersecting point of

R1 +R2 = k(L− k) log q (3.107)

with the boundary of Rcol is a point of the form

(R1(d1, d2),R2(d1, d2)), (3.108)

where

(d1, d2) ∈ D̃ ∪
{
(M1 − 1, 0), . . . , (0, 0), (0, 1), . . . , (0,M2 − 1)

}
. (3.109)

That is, the boundaries of Rcol and Rcoop can only intersect on either the
corner points of Rcol or the R1 - R2 axes.

Proof of Theorem 3.9. Note that Rcoop ∩ Rcol is a convex polytope, formed
as intersection of a polytope and the convex hull of a finite number of poly-
topes. Therefore, it suffices to prove the theorem only for its corner points. Let
(R1,R2) ∈ Rcoop ∩Rcol be a corner point. It is clear that one of the followings
occurs.

(i) (R1,R2) is a corner point of Rcol and interior point of Rcoop;

(ii) (R1,R2) is an intersecting point of the boundaries of Rcol and Rcoop.

In the former case, Lemma 3.10 which characterizes the set of corner points of
Rcol, implies there exists a pair (d1, d2) ∈ D̃ such that

(R1,R2) = (R1(d1, d2),R2(d1, d2)). (3.110)

Also (R1,R2) ∈ Rcoop implies

(d1 + d2)
(
L− (d1 + d2)

)
log q = R1 +R2 ≤ k(L− k) log q. (3.111)
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Note that the function f(x) , x(L − x) is an increasing function of x for x ∈
(0, L/2). Therefore, d1 + d2 ≤ k = min[M1 +M2, N ], and hence (d1, d2) ∈ D∗,
which implies that (R1,R2) ∈ R∗.

In the latter case, it follows from Lemma 3.11 that (R1,R2) should be either
a corner point of Rcol for which the above argument holds, or of the form
(R1,R2) = (R1(d1, d2),R2(d1, d2)) with d1d2 = 0. Again (R1,R2) ∈ Rcoop,
which implies that d1 + d2 ≤ k = min[M1 +M2, N ], and (R1,R2) ∈ R∗. This
completes the proof.

Corollary 3.1. The number of corner points of the rate region R∗ excluding
the point (0, 0) is equal to

min
[
M1, (N −M2)

+
]
+min

[
M2, (N −M1)

+
]
+ 2− 1{N≥M1+M2}. (3.112)

Proof. By Lemma 3.10 the set of corner points of region Rcol correspond to
the pairs (d1, d2) which belong to the set

D̃ =
{
(0,M2), . . . , (M1,M2), . . . , (M1, 0)

}
. (3.113)

In this case the number of corner points excluding (R1,R2) = (0, 0) is M1 +
M2 + 1.

However the final rate region is the intersection of Rcol and Rcoop, where
the later one includes all the rate pairs with sum smaller than k(L − k) log q,
k = min[M1 +M2, N ], see Proposition 3.1.

Lemma 3.11 explains how these two regions intersect with each other. In
this case, the corner points correspond to the pairs (d1, d2) which belong to the
set {

(0,M2), . . . , (α,M2), (M1, β), . . . , (M1, 0)
}

(3.114)

where α = min[M1, (N −M2)
+] and β = min[M2, (N −M1)

+]. So the number
of corner points excluding (0, 0) is

α+ β + 2− 1{N≥M1+M2}, (3.115)

where 1{N≥M1+M2} takes into account the case where two points (α,M2) and
(M1, β) overlap with each other.

3.5 Concluding Remarks

In this chapter, we used a random matrix channel to model the problem of
multicasting over a packet network that employs randomized network coding.
We calculated the capacity of this channel for the case where the finite field of
operation Fq is large, but showed through simulation results fast convergence
for small values of q. We prove that use of subspace coding, proposed for alge-
braic coding in [1, 41], is optimal for this channel. Moreover, we showed that
the capacity achieving distribution for very small packet lengths uses subspaces
of all dimensions, while as the packet length increases, the number of required
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dimensions in the optimal distribution decreases. In particular, the choice of
the subspace dimension used in the seminal work of Koetter and Kschischang
[1] is indeed optimal for large enough packet size. We extended our work to
the case of multiple access with two sources, where we used a coloring argu-
ment to derive an outer bound for the capacity that we believe is interesting
in itself. We showed that in all the cases we examined, the throughput benefits
subspace coding offers as compared to the use of coding vectors go to zero as
the alphabet size q increases, and thus use of coding vectors is (asymptotically)
optimal.
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3.A Omitted Proofs

Proof of Theorem 3.1. To prove the theorem, we start with I(X;Y ) for the
channel Chm, stated in (3.34), where the channel transition probability is given
in (3.33). We will show that for each input distribution PX(x) there exists an in-
put distribution PΠX

(πx) for the channel Chs such that I(X ;Y ) = I(ΠY ; ΠX)
and vice versa.

We know that PY |X(y|x) = PY |X(y|x′) if 〈x〉 = 〈x′〉. So we can write

I(X;Y ) =
∑

πx∈X̃ , y∈Y

PΠX
(πx)PY |ΠX

(y|πx) log
(
PY |ΠX

(y|πx)
PY (y)

)
, (3.116)

where we choose PΠX
(πx) =

∑
x∈X :〈x〉=πx

PX(x) and define

PY |ΠX
(y|πx) ,





q−N dim(πx) 〈y〉 ⊑ πx,

0 otherwise.
(3.117)

Then expanding I(X;Y ) we have

I(X;Y ) =

∑

πx∈X̃

PΠX
(πx)

∑

πy∈Ỹ

∑

y∈Y,
〈y〉=πy

PY |ΠX
(y|πx) log

(
PY |ΠX

(y|πx)
PY (y)

)
. (3.118)

Now using the symmetry properties of PY |ΠX
(y|πx) we can simplify I(X;Y ).

In fact PY |ΠX
(y1|πx) = PY |ΠX

(y2|πx) and PY (y1) = PY (y2) if 〈y1〉 = 〈y2〉.
So we can remove the summation over y and write

I(X ;Y ) =

∑

πx∈X̃

PΠX
(πx)

∑

πy∈Ỹ

ψ(L,N, πy)PY |ΠX
(y|πx) log

(
PY |ΠX

(y|πx)
PY (y)

)
,

(3.119)

for some matrix y such that 〈y〉 = πy. Recall that ψ(L,N, πy) is defined in
Definition 2.4, Section 3.1. Defining

PΠY |ΠX
(πy |πx) , ψ(L,N, πy) PY |ΠX

(y|πx)
∣∣
for some y:〈y〉=πy

, (3.120)

we can write

I(X;Y ) =
∑

πx∈X̃ ,πy∈Ỹ

PΠX
(πx)PΠY |ΠX

(πy|πx) log
PΠY |ΠX

(πy |πx)
PΠY

(πy)

= I(ΠX ; ΠY ). (3.121)
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Based on the above discussion going back from the channel Chs to Chm is very
easy. It is sufficient to choose

PX(x) =
PΠX

(πx)

ψ(L,M, πx)
, ∀x : 〈x〉 = πx, (3.122)

for all πx ∈ X̃ . This completes the proof.

Proof of Lemma 2.5. We want to count the number of different matrices X ∈
Fk×L
q such that 〈X〉 = πd where πd is an specific d dimensional subspace of FL

q .
We know that we can decompose X as

X = AB, A ∈ Fk×d
q , B ∈ Fd×L

q , (3.123)

where A and B are full rank matrices. Let us fix B such that 〈B〉 = πd. Now
for every two different full rank matrices A and A′ we would obtain different
matrices X = AB and X′ = A′B such that X 6= X′ and 〈X〉 = 〈X′〉 = πd. So
the number of different X where 〈X〉 = πd is equal to the number of full rank

N × d matrices over F which is equal to
∏d−1

i=0 (q
k − qi), and we are done.

Proof of Lemma 3.4. Let PΠX
(πx) be the optimal input distribution of the

channel Chs with transition probabilities given in (3.6). For a fixed dimension
0 ≤ d ≤ min[M,L], and an arbitrary permutation

σ :

{
1, 2, . . . . ,

[
L

d

]}
−→

{
1, 2, . . . . ,

[
L

d

]}
(3.124)

which acts on subspaces of dimension d, define Pσ(πx) as

Pσ(πx) =





PΠX
(σ(πx)) if dim(πx) = d,

PΠX
(πx) if dim(πx) 6= d.

(3.125)

Also define

P ∗(πx) =
1[
L
d

]
!

∑

σ

Pσ(πx) (3.126)

where the summation is over all possible permutations. Rewriting the mutual
information in (3.43) as a function of the input distribution and the transition
probabilities, I(PΠX

(πx), PΠY |ΠX
(πy|πx)), we have

I(P ∗(πx),PΠY |ΠX
(πy|πx))

= I

(
1[
L
d

]
!

∑

σ

Pσ(πx), PΠY |ΠX
(πy|πx)

)

(a)

≥ 1[
L
d

]
!

∑

σ

I(Pσ(πx), PΠY |ΠX
(πy|πx))

(b)
= I(PΠX

(πx), PΠY |ΠX
(πy|πx)) (3.127)
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where (a) is due to concavity of the mutual information with respect to the
input distribution, and (b) holds because

I(Pσ(πx), PΠY |ΠX
(πy |πx)) = I(PΠX

(πx), PΠY |ΠX
(πy|πx)) (3.128)

for all σ, since the permutation only permutes the terms in a summation in
(3.43).

Note that P ∗(πx) assigns equal probabilities to all subspaces with dimension
d, and the above-mentioned inequality shows that it is as good as the optimal in-
put distribution. A similar argument holds for all 0 ≤ d ≤ min[M,L]. Therefore,
a dimensional-uniform distribution achieves the capacity of the channel.

Proof of Lemma 3.5. Assuming an optimal input probability distribution of
the form (3.44), the probability of receiving a specific subspace ΠY = πy at the
receiver can be written as

PΠY
(πy) =

∑

πx∈X̃

PΠY |ΠX
(πy |πx)PΠX

(πx)

=
∑

πx∈X̃ : πy⊑πx

ψ(L,N, πy)q
−Ndx

αdx[
L
dx

] . (3.129)

Splitting the summation into two, we can write

PΠY
(πy) = ψ(L,N, πy)

min[M,L]∑

dx=dy

∑

πx∈X̃ :
dim(πx)=dx,

πy⊑πx

q−Ndxαdx[
L
dx

] , (3.130)

where dy = dim(πy). Using Lemma 2.4, we can replace the second summation
in (3.130).

Thus we can rewrite (3.130) as follows

PΠY
(πy) = ψ(L,N, πy)

min[M,L]∑

dx=dy

[
L− dy
dx − dy

]
q−Ndxαdx[

L
dx

]

(a)
=

ψ(L,N, πy)[
L
dy

]
min[M,L]∑

dx=dy

[
dx
dy

]
q−Ndxαdx

=
ψ(N, dy)[

L
dy

]
min[M,L]∑

dx=dy

[
dx
dy

]
q−Ndxαdx

, (3.131)

where (a) follows from Lemma 2.2, where we have

[
L− dy
dx − dy

][
L

dy

]
=

[
L

dx

][
dx
dy

]
. (3.132)
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Now we can simplify the mutual information I(ΠX ; ΠY ) in (3.43) as follows.
Using (3.6), (3.44), and (3.131) for I(ΠX ; ΠY ) we can write

I(ΠX ; ΠY ) =
∑

πx∈X̃ ,πy∈Ỹ

PΠX
(πx)PΠY |ΠX

(πy|πx) log
(
PΠY |ΠX

(πy |πx)
PΠY

(πy)

)

=

min[M,L]∑

dx=0

min[N,dx]∑

dy=0

∑

πx∈X̃ :
dim(πx)=dx

∑

πy∈Ỹ:
dim(πy)=dy,

πy⊑πx

F (dx, dy), (3.133)

where

F (dx, dy) =
ψ(N, dy)q

−Ndxαdx[
L
dx

] log

(
q−Ndx

f(dy)

)
(3.134)

and

f(dy) ,
PΠY

(πy)

ψ(N, dy)
=

1[
L
dy

]
min[M,L]∑

dx=dy

[
dx
dy

]
q−Ndxαdx

, (3.135)

because PΠY
(πy) only depends on dy. Now observe that the two inner most

summations depend on πx and πy only through their dimensions. So we can
write

I(ΠX ; ΠY ) =

min[M,L]∑

dx=0

αdx
q−Ndx

min[N,dx]∑

dy=0

ψ(N, dy)

[
dx
dy

]
log

(
q−Ndx

f(dy)

)
. (3.136)

Then using Lemma 2.7 in Section 2.3 we can further simplify the mutual in-
formation and write

I(ΠX ; ΠY ) =−
min[M,L]∑

dx=0

αdx
Ndx log q

−
min[M,L]∑

dx=0

αdx
q−Ndx

min[N,dx]∑

dy=0

ψ(N, dy)

[
dx
dy

]
log(f(dy)), (3.137)

that is the assertion of Lemma 3.5.

Proof of Lemma 3.6. By taking the partial derivative of the mutual informa-
tion with respect to αk, we have that

I ′k ,
∂I(ΠX ; ΠY )

∂αk

=−Nk log q −
min[N,k]∑

dy=0

ψ(N, dy)

[
k

dy

]
q−Nk log (f(dy))

−
min[M,L]∑

dx=0

αdx

min[N,dx,k]∑

dy=0

ψ(N, dy)

[
dx
dy

]
q−Ndx

[
k
dy

]
q−Nk log e
[
L
dy

]
f(dy)

. (3.138)
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The we can write

I ′k =−Nk log q −
min[N,k]∑

dy=0

ψ(N, dy)

[
k

dy

]
q−Nk log (f(dy))

−
min[N,k]∑

dy=0

[
k
dy

]
ψ(N, dy)q

−Nk

f(dy)

min[M,L]∑

dx=dy

αdx

[
dx

dy

]
[
L
dy

]q−Ndx

︸ ︷︷ ︸
f(dy)

log e

(a)
= −Nk log q −

min[N,k]∑

dy=0

ψ(N, dy)

[
k

dy

]
q−Nk log (f(dy))− log e, (3.139)

where to derive (a) we use Lemma 2.7 in Section 2.3.

Proof of Lemma 3.7. For convenience we rewrite (3.52) again

log (f(dy)) = −dyL log q +O(q−1) + log




min[M,L]∑

dx=dy

q−(N−dy)dxαdx


 . (3.140)

We prove the assertion in two steps for every k. First, let us assume that the
αi’s are such that we have log (f(min[N, k])) = o(q). Then using (3.140) one
can conclude that

min[M,L]∑

dx=min[N,k]

q−(N−dy)dxαdx
= 2−o(q), (3.141)

so we should have αi = 2−o(q) for min[N, k] ≤ i ≤ min[M,L]. We know that

0 ≤ αi ≤ 1, and
∑min[M,L]

i=0 αi = 1, so ∃j : αj = Ω(1). So we can deduce that

log(f(dy)) =





o(q) j < dy ≤ min[N, k],

Θ(log q) 0 ≤ dy ≤ j,
(3.142)

where j, 0 ≤ j ≤ min[N, k], is the largest index such that αj = Ω(1). So in
this case the dominating term in the summation of (3.51) is the one obtained
for dy = min[N, k] because the order difference between each term inside the
summation of (3.51) is at least of order Θ(q).

Now, for the second case, let us assume that the αi’s are such that we
have log (f(min[N, k])) = Ω(q). We will show that this assumption leads to a
contradiction. Using (3.140) we can write

min[M,L]∑

dx=min[N,k]

q−(N−dy)dxαdx
= 2−Ω(q), (3.143)
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so we should have αi = 2−Ω(q) for min[N, k] ≤ i ≤ min[M,L]. As before, we
find the asymptotic behavior of log(f(dy)) for different values of dy but in this
case we should make finer regimes for log(f(dy)). The asymptotic behavior of
αi, 0 ≤ i ≤ min[N, k], is either 2−Ω(q) or 2−o(q). So we can write

log(f(dy)) =





Ω(q) l < dy ≤ min[N, k],
o(q) j < dy ≤ l,
Θ(log q) 0 ≤ dy ≤ j,

(3.144)

where l, 0 ≤ l ≤ min[N, k], is the largest index such that αi = 2−o(q) which
means that αi = 2−Ω(q) for l < i ≤ min[M,L]. As before j, 0 ≤ j ≤ min[N, k],
is the largest index such that αj = Ω(1). Now we check the Kuhn-Tucker con-
ditions, (3.47), for I ′k and I ′j . From the above argument we have that I ′k = Ω(q)
and I ′j = Θ(log q). We know that αj = Ω(1) > 0, so we have I ′j = Θ(log q) = λ.
On the other hand, we have I ′k = Ω(q) ≤ λ, which is a contradiction implying
the second case cannot occur. This completes the proof.

Proof of Lemma 3.8. There are
[
d1

d12

] .
= qd12(d1−d12) different choices for the

intersection of π1 and π2. We have to choose d2 − d12 basis vectors for the rest
of the subspace. This can be done in

(
qL − qd1

) (
qL − qd1+1

)
. . .
(
qL − qd1+d2−d12−1

)

(qd2 − qd12) (qd2 − qd12+1) . . . (qd2 − qd2−1)

.
= q(d2−d12)(L−d2) (3.145)

ways. So we have n(d1, d2, d12)
.
= qd12(d1−d12)+(d2−d12)(L−d2).

The proof of this lemma appeared in our paper [42]. An alternative proof
can also be obtained from [18, Lemma 2], by proper choice of parameters.

Proof of Lemma 3.9. Define π = π1 + π2, where

dim(π) = dim(π1) + dim(π2)− dim(π1 ∩ π2) = d1 + d2 − d12 , d. (3.146)

The proof of this lemma is similar to that of Lemma 3.8, unless we can only
choose the last d2−d12 basis vectors from π instead of FL

q . Therefore replacing
L in Lemma 3.8 with d, we have

a(π1, π2)
.
= qd12(d1−d12)+(d2−d12)(d−d2) = qd2(d1−d12). (3.147)

Proof of Lemma 3.10. Let (R1,R2) be a corner point of the region Rcol. Since
Rcol is the convex hull of a set of primitive regions, there should exist a primitive
region R(d1, d2) which contains (R1,R2) as a corner point, i.e.,

∃(d1, d2) ∈ Dcol s.t. (R1,R2) =
(
R1(d1, d2),R2(d1, d2)

)
. (3.148)

We will show that any point (R1(d1, d2),R2(d1, d2)) is dominated by the seg-
ment connecting (R1(d1+1, d2),R2(d1+1, d2)) and (R1(d1, d2+1),R2(d1, d2+
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1)). In order to show that, we have to prove that there exists some λ ∈ [0, 1],
such that

R1(d1, d2) < λR1(d1 + 1, d2) + (1− λ)R1(d1, d2 + 1),

R2(d1, d2) < λR2(d1 + 1, d2) + (1− λ)R2(d1, d2 + 1). (3.149)

After a little simplification, (3.149) can be rewritten as

λ[L− d1 − d2 − 1] < d1,

(1− λ)[L − d1 − d2 − 1] < d2, (3.150)

or

d1
L− 1− d1 − d2

< λ <
L− 1− d1 − 2d2
L− 1− d1 − d2

. (3.151)

The last two inequalities can be satisfied for some choice of λ if and only if
d1 + d2 < (L − 1)/2. Therefore, if we have d1 < M1, d2 < M2, and d1 + d2 <
(L− 1)/2 for some (d1, d2) ∈ Dcol, then (d1+1, d2) and (d1, d2+1) also belong
to Dcol, and hence, (R1(d1, d2), R2(d1, d2)) is an interior point, and cannot be

on the boundary of the region. Eliminating such (d1, d2) from Dcol, we get D̃.
It is also easy to show that all of the rate pairs corresponding to (d1, d2) ∈ D̃

are on the boundary of Rcol. This can be done by comparing the slope of the
connecting segment for two consecutive points (according to the order they are

appeared in D̃). The slopes are

S
{(

R1(t,M2),R2(t,M2)
)
;
(
R1(t+ 1,M2),R2(t+ 1,M2)

)}

= − M2

L− 2t−M2 − 1
, for 0 ≤ t ≤M1,

S
{(

R1(M1, t),R2(M1, t)
)
;
(
R1(M1, t− 1),R2(M1, t− 1)

)}

= −L− 2t−M1 − 1

M1
, for 1 ≤ t ≤M2. (3.152)

It is easy to check that all the slopes are negative and they are in a decreasing
order. Therefore, no point in the set D̃ can be an interior point.

Proof of Lemma 3.11. Note that Rcol * Rcoop implies M1 +M2 > n. Since
Rcol is a convex region, its boundary intersects with the line R1+R2 = N(L−
N) log q in exactly two points (it cannot be only one point, otherwise it would
be inside of Rcoop). It is easy to verify that the rate points corresponding to
(d1, d2) = ((N −M2)

+,min[M2, N ]) and (d1, d2) = (min[M1, N ], (N −M1)
+)

lie on both the boundary of Rcol and the line R1 + R2 = N(L − N) log q.
Therefore this line cannot intersect with the boundary of Rcol in any other
point.
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3.B Extension to Packet Erasure Networks

Let us write the capacity for the erasure case as follows

Ce = max
PX

I(X ;Y , N)

= max
PX

[I(X;N) + I(X ;Y |N)]

(a)
= max

PX

I(X;Y |N)

= max
PX

EN [I(X;Y )], (3.153)

where (a) follows from the independence of input distribution PX and the
distribution of the number of received packets PN .
The Upper Bound:
We can write an upper bound for Ce as follows

Ce = max
PX

EN [I(X;Y )]

≤ EN

[
max
PX

I(X;Y )

]

= EN [i∗(L − i∗) log q], (3.154)

where i∗ = min[M,N, ⌊L2 ⌋]. From here on let us assume that M ≤ ⌊L2 ⌋. We
thus have that i∗ = N and we can write

Ce ≤ EN [N(L−N) log q]. (3.155)

Let us define µ1 , E [N ] and µ2 , E
[
N2
]
so we can write

Ce ≤ (µ1L− µ2) log q. (3.156)

The Lower Bound:
For the lower bound we can write

Ce = max
PX

EN [I(X ;Y )]

≥ EN [I(X;Y )]for some PX

= EN [I(ΠX ; ΠY )]for some PΠX
. (3.157)

From (3.45) we know that we can write

I(ΠX ; ΠY ) =−
min[M,L]∑

dx=0

αdx
Ndx log q

−
min[M,L]∑

dx=0

αdx
q−Ndx

min[N,dx]∑

dy=0

ψ(N, dy)

[
dx
dy

]
log(f(dy)), (3.158)
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where

f(dy) ,
1[
L
dy

]
min[M,L]∑

dx=dy

[
dx
dy

]
q−Ndxαdx

. (3.159)

Now assume that M ≤ ⌊L2 ⌋ and choose the input distribution to be αk = 1
for some 0 ≤ k ≤ M and αi = 0 for all i 6= k. Then for this input distribution
we have

I(ΠX ; ΠY ) =− kN log q − q−kN

min[N,k]∑

dy=0

ψ(N, dy)

[
k

dy

]
log(f(dy))

=− kN log q − q−kN

min[N,k]∑

dy=0

ψ(N, dy)

[
k

dy

]
log(f(dy)). (3.160)

Then assuming q is large we may approximate the above mutual information
as follows

I(ΠX ; ΠY ) ≈ −kN log q −
min[N,k]∑

dy=0

q−(N−dy)(k−dy) log(f(dy)). (3.161)

The term (N − dy)(k − dy) in the summation is maximized for dy = min[N, k]
and because we had shown before in Lemma 3.7 that log(f(dy)) = Θ(log q),
we can write

I(ΠX ; ΠY ) ≈ −kN log q − log(f(min[N, k]))

≈ −kN log q − log
(
qmin[N,k](k−L)−Nk

)

= min[N, k](L− k) log q. (3.162)

So by choosing k =M we can write the lower bound for Ce as follows

Ce ≥ EN [I(ΠX ; ΠY )]for some PΠX

≈ EN [N(L−M) log q]

= µ1 (L−M) log q. (3.163)
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- Richard Feynman

Non-coherent NC: An

Arbitrarily Varying Channel

Approach 4
As we have seen so far, randomized linear NC [4] is an efficient and practical

approach to implement network coding [6, 5] in large dynamically changing
networks because it does not require a priori the knowledge of the network
topology. However, in order to enable the receivers to decode, to each packet a
coding vector is appended to learn the transfer matrix induced by the network.

A different approach, other than using coding vectors, is to assume a non-
coherent scenario for communication, as proposed in [1], where neither the
source(s) nor the receiver(s) have any knowledge of the network topology or the
network nodes operations. Non-coherent communication allows creation of end-
to-end systems that are completely oblivious to the network state. In [1], the
authors proposed communications via choosing subspaces and they introduced
a subspace channel called “operator channel” (a channel which has subspaces
as input and output symbols). Then, they focused on algebraic subspace code
constructions over a Grassmannian for the operator channel.

Following [1], different probabilistic models have been proposed to model
the non-coherent randomized linear NC channel, where these models enable
one to define and characterize the capacity for such a channel. In all of these
works, when there are no errors in the network, the non-coherent linear NC
channel is modeled by a multiplicative matrix channel.

Montanari et al. [25] introduced a probabilistic model to capture the end-
to-end functionality of non-coherent NC operation, with a focus on the case
of error correction capabilities. Jafari et al. [24, 27, 33] (see also Chapter 3)
modeled the non-coherent NC channel by assuming that the transfer matrix
has i.i.d. entries selected uniformly at random in every time-slot. They showed
that coding over subspaces is sufficient to achieve the capacity. Moreover, they
obtained the channel capacity as a solution of a convex optimization problem
over O(min[M,N ]) variables and when the field size is greater than a threshold,
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they characterized the capacity by solving the optimization problem. Silva et
al. [26] derived the capacity of the multiplicative finite field matrix channel
under the assumption that the transfer matrix is square and chosen uniformly
at random among all full-rank matrices. Similarly, in this model the coding over
subspaces is sufficient to achieve the capacity. Yang et al. [28, 29] (see also
[30, 31]) considered a completely general scenario, making no assumption on
the distribution of the transfer matrix. They obtained upper and lower bounds
on the channel capacity, and give a sufficient condition on the distribution
of the transfer matrix such that coding over subspaces is capacity achieving.
They also studied the achievable rates of coding over subspaces. Nobrega et
al. [32] considered the case where the probability distribution of the rank of
the transfer matrix is arbitrary; however all matrices with the same rank are
equiprobable. Then, following an approach similar to Chapter 3 (see also [33]),
they expressed the capacity as the solution of a convex optimization problem
over O(min[M,N ]) variables. They also observed that in this case the subspace
codes are sufficient to achieve the capacity.

In most of the previous works (including Chapter 3), only certain proba-
bility models for the channel transfer matrix have been discussed. However,
in practice a complete probabilistic characterization of the matrix channel is
difficult and the network may not follow a given probability model. Instead of
assuming a complete probability model, we consider in this chapter that only
a partial knowledge about the probabilistic model of the channel is known.

More precisely, we assume that the rank distribution of the transfer matrix
is known a priori, but the distribution of matrices among each rank is unknown
and arbitrary. Though very similar to the arbitrarily varying channel (AVC)
model introduced in [43] (refer to [44] and the references therein), but this
non-coherent NC model is not exactly an AVC. We introduce a “partially
arbitrary varying channel” (PAVC) to capture the statistical property of this
non-coherent NC model.

By extending results for the AVC, we obtain the capacities of the PAVC for
randomized and deterministic codes (Theorem 4.1 and 4.3). We further show
that the randomized and the deterministic code capacities of the non-coherent
NC model are the same (Theorem 4.4), and that subspace coding is sufficient to
achieve the capacity (Corollary 4.3). This AVC approach to the non-coherent
NC provides a justification for the optimality of subspace coding in a more
general setting.

4.1 Problem Setup

In this section, we introduce a non-coherent NC channel model which is
different from the model introduced in Chapter 3. Moreover, we introduce the
notion of partially arbitrarily varying channel which forms the foundation of
the results of this chapter.
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4.1.1 Non-coherent Network Coding Channel Model

Consider a unicast communication over a network where the relay nodes
perform random linear NC over a finite field Fq. Suppose that time is slotted
and the channel is block time-varying. At every time-slot, the source injects
M packets x1[t], . . . ,xM [t] of length L symbols from Fq into the network, i.e.,
Xi[t] ∈ FL

q . The receiver collects N packets y1[t], . . . ,yN [t] and aims to decode
the transmitted packets.

We use matrices X[t] and Y [t] to denote respectively, the transmitted and
received packets, i.e., the ith rows of these matrices represent the ith trans-
mitted and received packets, respectively. For a unicast communication, at
time-slot (block) t, the receiver observes

Y [t] = H [t]X[t], (4.1)

where X[t] ∈ FM×L
q , Y [t] ∈ FN×L

q , and H [t] ∈ FN×M
q . We assume that the

channel transfer matrix H[t] is unknown to both the transmitter and the re-
ceiver and it changes arbitrarily from one block to another block with a con-
straint on its rank. More precisely, the ranks of H[t], t = 1, 2, . . ., are indepen-
dent and follow the same distribution of a random variable R. The conditional
distribution of H [t] given rank (H[t]) is unknown and changes arbitrarily for
different t. However, we assume that the distribution of the random variable R
is known. We may consider the channel transfer matrix as the channel state.
For a given sequence of channel transfer matrices h[1 : n] the channel transition
probability is

Wn
m (y[1 : n]|x[1 : n];h[1 : n]) =

n∏

t=1

Wm (y[t]|x[t];h[t]) , (4.2)

where Wm(y|x;h) , 1{y=xh} is a stochastic matrix.
The above model is very similar to an arbitrarily varying channel (AVC)

model (refer to [44] for more information about AVC) but it does not completely
fit into that model. In this work, we will show that it is indeed possible to extend
the AVC concepts and results for the above channel model and characterize its
capacity.

4.1.2 Partially Arbitrarily Varying Channel (PAVC)

Before defining a partially arbitrarily varying channel (PAVC), let us first
consider an AVC model. Let X ∈ X and Y ∈ Y denote the input and output
symbol of a channel where X and Y are finite sets denoting the channel input
and output alphabets, respectively. Let us consider a transmission scenario
where the channel parameters vary arbitrarily from symbol to symbol during
the course of a transmission. More precisely, for the channel transition matrix,
we can write

Wn(y|x; s) ,
n∏

t=1

W (yt|xt; st), (4.3)
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where s = (s1, . . . , sn), si ∈ S, and W : X × S → Y is a given stochastic
matrix. S is a finite set, often referred to as the state space. This model, called
a “discrete memory-less arbitrarily varying channel,” will be referred to as an
AVC.

Now, we define a PAVC as an AVC with a probability constraint over the
state space S. Define a function q : S → Q where Q , {0, . . . ,m} and define a
random variableQ with alphabetQ whose distribution is known by the encoder
and the decoder. For a PAVC, we have q(St), t = 1, 2 . . ., are independent and
follow the same distribution of Q. In other words,

Pq(S)(q1, . . . , qn) =
n∏

t=1

PQ(qt), (4.4)

where q(S) , (q(S1), . . . , q(Sn)). We call this model a “discrete memory-less
partially arbitrarily varying channel,” and will refer to it as a PAVC.

In this work, we are interested in characterizing the capacity of a PAVC.
However, we first have to define the capacity. As there are different notions of
capacity for an AVC based on different error criteria, the same is true for a
PAVC (for more information refer to [44]).

Suppose that the message set of a code is identified as the set M =
{1, . . . ,K}, so that a length-n block code is given by a pair of mapping (ψ, φ),
where ψ : M 7→ Xn is the encoder, and φ : Yn 7→ M ∪ {0} is the decoder,
where the output 0 counts for an error. Let us define

e(i, s, ψ, φ) ,
∑

y: φ(y) 6=i

Wn(y|ψ(i); s). (4.5)

Then, the error probability for message i, when this code is used on a PAVC
and when the state sequence is given to be s ∈ Sn, equals

ed(i, s) , e(i, s, ψ, φ), (4.6)

and the average probability of error for a state sequence s is

ēd(s) ,
1

K

K∑

i=1

ed(i, s). (4.7)

Definition 4.1. A number R > 0 is called an achievable rate for the given
PAVC (for deterministic code and average error probability criterion) if for
every ǫ > 0, δ > 0, and sufficiently large n, there exists length-n block code
(ψ, φ) with

1

n
logK > R− δ, (4.8)

and

max
PS|q(S)

E [ēd(S)] , max
PS|q(S)

∑

s

ēd(s)PS|q(S) (s|q(s))PQn (q(s)) ≤ ǫ, (4.9)
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where PQn(q) ,
∏n

t=1 PQ(qt). The maximum achievable rate is called the ca-
pacity of the PAVC and is denoted by Cd,a

pavc (where superscript “a” denotes for
the average error probability criterion given by (4.7) and “d” denotes for the
determinist code).

Remark 4.1. Note that if there is no probability constraint on the state space
in Definition 4.1 (PS is unknown instead of PS|q(S)), then by replacing the
maximization over PS|q(S) with PS , we recover the average error criterion for
an AVC, namely, maxPS

E [ēd(S)] ≤ ǫ is equivalent to maxs ēd(s) ≤ ǫ.

In contrast to using deterministic codes, there exists another communica-
tion technique called randomized coding which can provide improvement in
performance if a common source of randomness is available between the source
and the destination.

Precisely, a randomized code (Ψ,Φ) is a random variable with values in the
family of all length-n block codes (ψ, φ), defined earlier in this section, with
the same message setM. Then, the error probability for message i, when this
code is used on a PAVC and when the state sequence is given to be s ∈ Sn,
equals

er(i, s) , EΨ,Φ [e(i, s,Ψ,Φ)], (4.10)

and the average probability of error for a state sequence s is

ēr(s) ,
1

K

K∑

i=1

er(i, s). (4.11)

Similar to Definition 4.1, we define the capacity Cr,a
pavc by replacing the function

ēd(s) with ēr(s). Here, the superscript “r, a” denotes for randomized codes and
average error probability.

Yet there is another communication scheme called coding with stochastic
encoder which only allows randomization in the transmitter, i.e., there is no
shared randomness between the encoder and the decoder. More precisely, a
code with stochastic encoder (Ψ, φ) is a random variable with values in the
family of all length-n block codes (ψ, φ) with the same message setM.

The error probability for message i, when this code is used on a PAVC and
when the state sequence is given to be s ∈ Sn, equals

et(i, s) , EΨ [e(i, s,Ψ, φ)], (4.12)

and the average probability of error for a state sequence s is

ēt(s) ,
1

K

K∑

i=1

et(i, s). (4.13)

Similar to Definition 4.1, we define the capacity Ct,a
pavc by replacing the function

ēd(s) with ēt(s). Here, the superscript “t, a” denotes for codes with stochastic
encoder and average error probability.
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4.2 Main Results

Our main goal is to characterize the capacity of the non-coherent NC chan-
nel described in Section 4.1.1. Toward this end, we first determine the capacity
of a general PAVC.

4.2.1 Capacity of a PAVC

Before stating the deterministic code capacity of a PAVC, we need the
following definition.

Definition 4.2. A PAVC is called symmetrizable if for some channel U :
X ×Q 7→ S, and for every x, x′, and y we have

∑

s

W (y|x; s)U (s|x′, q(s))PQ (q(s)) =

∑

s

W (y|x′; s)U (s|x, q(s))PQ (q(s)) . (4.14)

Let U(X × Q → S) be the set of all such channel. If U(X × Q → S) = ∅ then
the PAVC is called non-symmetrizable.

Then, the following theorem characterizes the capacity of a PAVC for de-
terministic codes and average error criterion.

Theorem 4.1. For the deterministic code capacity Cd,a
pavc we have Cd,a

pavc > 0 if

and only if the PAVC is non-symmetrizable. If Cd,a
pavc > 0, then we have

Cd,a
pavc = max

PX

min
PS|q(S)

I(PX , W̄S) = min
PS|q(S)

max
PX

I(PX , W̄S), (4.15)

where

W̄S(y|x) , E [W (y|x;S)]
=
∑

s

W (y|x; s)PS|q(S) (s|q(s))PQ (q(s)) , (4.16)

and I(PX , W̄S) , I(X ;Y ) such that Y is connected to X through the channel
W̄S .

Proof. For the proof refer to Appendix 4.A.

Theorem 4.2. For a PAVC, the capacity of codes with stochastic encoder is
equal to the deterministic code capacity, i.e., Ct,a

pavc = Cd,a
pavc.

Proof. For the proof refer to Appendix 4.B.

Remark 4.2. Theorem 4.2 shows that randomization at the encoder does not
improve the deterministic code capacity of a PAVC.
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The following theorem characterizes the capacity of a PAVC for randomized
code.

Theorem 4.3. The randomized code capacity of a PAVC is given by

Cr,a
pavc = max

PX

min
PS|q(S)

I(PX , W̄S) = min
PS|q(S)

max
PX

I(PX , W̄S), (4.17)

where W̄S is defined in (4.16).

Proof. For the proof refer to Appendix 4.C.

Remark 4.3. Same as an AVC, the randomized code capacity of a PAVC for
the maximum and the average error probability criteria are the same.

Remark 4.4. In a more general scenario, when q(St), t = 1, 2, . . . are not
i.i.d. but still for every time t the marginal probability P [q(St) = i] = PQ(i),
the adversary who controls the channel state has more power and hence the
capacity in this case is less than or equal to the capacity of i.i.d. case.

4.2.2 Capacity of Non-coherent Network Coding

According to the definition of the PAVC in Section 4.1.2, the non-coherent
NC model defined by (4.1) is a PAVC for which the deterministic and stochastic
code capacities are equal, as stated in Theorem 4.1 and Theorem 4.2, and can
be characterized as follows.

Corollary 4.1. The deterministic and stochastic code capacities of the channel
(4.1) are equal. They are non-zero and given by

C = max
PX

min
PH| rank(H)

I(X;Y ) = min
PH| rank(H)

max
PX

I(X ;Y ), (4.18)

if and only if the channel is non-symmetrizable, i.e., if there is no stochastic
matrix U : X × [0 : min[M,N ]] 7→ H such that we have

min[M,N ]∑

r=0

∑

h: rank(h)=r

Wm(y|x;h)U(h|x′, r)PR(r) =

min[M,N ]∑

r=0

∑

h: rank(h)=r

Wm(y|x′;h)U(h|x, r)PR(r), (4.19)

for all x,x′ ∈ FM×L
q and y ∈ FN×L

q .

Similarly, using Theorem 4.3, the randomized code capacity of the non-
coherent NC defined by (4.1) is stated in the following corollary.

Corollary 4.2. The randomized code capacity of the channel defined by (4.1)
is given by (4.18).
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It is hard to show directly that the channel defined by (4.1) is non-symmetrizable.
Instead, we prove this indirectly in the next lemma by showing the existence of
a (stochastic) coding scheme that gives a non-zero transmission rate over the
channel.

Lemma 4.1. If E [R] > 0, the channel defined by (4.1) is non-symmetrizable,
and so by Corollary 4.1, its capacity is non-zero and is given by (4.18). If
E [R] = 0, then the capacity is zero.

Proof. The case for E [R] = 0 follows because H [t] is the zero matrix with
probability one. To show the non-symmetrizability of the channel defined by
(4.1) when E [R] > 0, we construct a stochastic coding scheme that can achieve
a strictly positive rate. The idea is to degrade the channel defined by (4.1) to
a binary memory-less Z-channel with a known cross-over probability.

For each time slot t, let G[t] be a random matrix over FM×1
q with uniform

i.i.d. components. Define a binary-input binary-output channel as follows. Let
B[t] be the input of the channel at time t, which takes the value 0 or 1 in Fq.
The output of the channel at the time t is Y [t] = rank(H[t]G[t]B[t]). Since
the dimension of the matrix H[t]G[t]B[t] is N ×1, Y [t] takes the integer value
0 or 1. Let us check the transition matrix of this channel. If B[t] = 0, then
Y [t] = 0. If B[t] = 1, then Y [t] = rank(H[t]G[t]). Note that rank(H[t]G[t])
is a random variable whose distribution only depends on the distribution of
rank(H[t]) ∼ R (see the computation in [28, Section IV]). Since rank(H[t]),
t = 1, 2, . . . are independent, the channel is a binary memory-less Z channel.

What remains is to check the cross over probability of the Z channel given
by

P [Y [t] = 0|X [t] = 1] = P [rank(H[t]G[t]) = 0]. (4.20)

Since E [rank(H[t])] = E [R] > 0, P [rank(H[t]G[t]) = 0] < 1, because oth-
erwise H[t] is the zero matrix with probability one, a contradiction to the
assumption that E [R] > 0. Hence, the channel has a positive capacity.

Definition 4.3 ([32]). A random matrix is called u.g.r. (uniform given rank)
if any two matrices with the same rank are equiprobable.

Lemma 4.2. For any N×M random matrix H, AHB is u.g.r. with the same
rank distribution as of H, where A ∼ Uni

(
FN×N
q , N

)
and B ∼ Uni

(
FM×M
q ,M

)

are uniform and full-rank random matrices, and A, B, and H are independent.

Proof. Let G = AHB. Then

PG(g) =
∑

a∈FN×N
q ,b∈FM×M

q ,

rank(a)=N,rank(b)=M

PA(a)PB(b)PH(a−1gb−1), (4.21)

where PA(a) and PB(b) respectively do not depend on a and b. Now, for
another instance g′ of G with g′ = UgV for some full rank matrices U and V ,
we can see that PG(g) = PG(g′). In the following we show that if rank(g) =
rank(g′), then there exist full rank matrices U and V such that g′ = UgV .
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Fix two decompositions g = bc and g′ = b′c′ with rank(b) = rank(b′) =
rank(g), which implies rank(c) = rank(c′) = rank(g). Then there exist full
rank square matrices U and V such that Ub = b′ and cV = c′. Hence,
g′ = UgV .

Lemma 4.3. In the capacity expression (4.18), the u.g.r. distribution for
PH| rank(H) is a minimizer for the expression.

Proof. Let P ∗
H| rank(H) be the distribution that minimizes (4.18). Now con-

sider a new channel defined by AHB where A ∼ Uni
(
FN×N
q , N

)
and B ∼

Uni
(
FM×M
q ,M

)
are uniform full rank random matrices (note that A, B, and

H are independent). Then by Lemma 4.2, the rank distribution of AHB is
the same as that of H, but AHB has a u.g.r. distribution.

By the data processing inequality, the mutual information between the input
and output of the new channel is less than or equal to the original channel. So
if P ∗

H| rank(H) is a minimizer, then the u.g.r. distribution with the same rank
distribution is also a minimizer.

From Corollary 4.1, Corollary 4.2, Lemma 4.1, and Lemma 4.3 we obtain
the following theorem.

Theorem 4.4. The randomized and deterministic code capacities of the non-
coherent NC model, i.e., the matrix channel defined by (4.1), are the same
and are equal to the capacity of the matrix channel Y = H̄X where H̄ has
the same rank distribution as H but has uniform distribution among matrices
having the same rank, i.e.,

C = max
PX

min
PH| rank(H)

I(X ;Y ) = max
PX

I(X; H̄X).

Theorem 4.4 shows that, if only the knowledge of the rank distribution of
the transfer matrix is available, the maximum rate that we can communicate
over the channel defined by (4.1) is equal to the communication rate over a
channel which has the same rank distribution but the channel transfer matrix
is u.g.r.

Now, it is shown in [32, Theorem 16] that for a matrix multiplicative chan-
nel with u.g.r. distribution over the transfer matrix, the subspace coding is
sufficient to achieve the capacity. So we have the following corollary.

Corollary 4.3. Subspace coding is sufficient to achieve the capacity (ran-
domized and deterministic) of the non-coherent NC channel discussed in Sec-
tion 4.1.1.

Although determining the exact value of the capacity in Theorem 4.4 is
still open, as shown in [32], the capacity can be expressed as the solution of
a convex optimization problem with only O (min[M,N ]) parameters which is
computationally tractable.
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4.3 Concluding Remarks

In this chapter, we proposed an arbitrarily varying channel (AVC) approach
to model the non-coherent NC by a matrix channel where the channel statistics
is known only up to a rank distribution over the transfer matrix.

The previous works investigate the capacity of non-coherent network cod-
ing (modeled by the matrix channel) for certain probability distributions. In
contrast, we relax the problem model by considering that only the rank dis-
tribution of the transfer matrix is known and apart from that the transfer
matrix can be changed arbitrarily from time-slot to time-slot. We believe that
this AVC approach better fits to model complex networks where relay nodes
perform randomized NC.

In order to characterize the capacity of such a channel, we defined a new
class of channels, called partially AVC (PAVC), with a partial probabilistic
constraint over the state space. By extending the previous result on AVC to
PAVC, we proved that the subspace coding is optimal to achieve the capacity
of non-coherent NC.
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4.A Deterministic Code Capacity of a PAVC: Proof of
Theorem 4.1

In this section, we prove Theorem 4.1. The proof goes along similar steps as
it goes in [45]. However, for completeness, we will be going to write the whole
steps here.

Let us start with some definitions. For η ≥ 0, let us define a family of joint
distribution PXSY of random variables X , S, and Y with values from the sets
X , S, and Y, respectively, by

Dη , {PXSY : D (PXSY ||PX × PS ×W ) ≤ η} , (4.22)

where PS(s) = PQ(q(s)) × PS|q(S)(s|q(s)), D(·||·) denotes Kullback-Leibler in-
formation divergence, and PX×PQ×PS|q(S)×W denotes a joint distribution on
X×S×Y with probability mass function PX(x)PQ(q(s))PS|q(S)(s|q(s))W (y|x; s).
Note that in the above definitions, PQ is known and fix for a particular PAVC.
We also define, for any distribution P on X , the quantity

I(P ) , min
PS|q(S):

PXSY ∈D0, PX=P

I(X ;Y ), (4.23)

where D0 denotes Dη for η = 0.
From [46], we define the type of a sequence x = (x1, . . . , xn) ∈ Xn to

be the distribution Px on X where Px(a) is the relative frequency of a ∈ X
in x. Similarly, joint types are distributions on product spaces. Joint types of
length-n sequences will be represented by joint distributions of dummy random
variables. For example, if X,S, Y represents a joint type, i.e., PXSY = Px,s,y

for some x ∈ Xn, s ∈ Sn, and y ∈ Yn, we write

TX , {x : x ∈ Xn, Px = PX} ,
TXY , {(x,y) : x ∈ Xn,y ∈ Yn, Px,y = PXY } ,

TXSY , {(x, s,y) : x ∈ Xn, s ∈ Sn,y ∈ Yn, Px,s,y = PXSY } . (4.24)

Similarly, we use notation for sections of TXY , TXSY , etc.; for example

TY |X(x) , {y : (x,y) ∈ TXY } ,
TY |XS(x, s) , {y : (x, s,y) ∈ TXSY } . (4.25)

Lemma 4.4. If the PAVC is non-symmetrizable (see Definition 4.2), then I(P )
defined by (4.23) is positive for every P satisfying P (x) > 0 for all x ∈ X .

Proof. In fact, if I(P ) were zero for such a P , then (4.23) implies the existence
of random variable S such that for PXSY = PXPQPS|q(S)W , X and Y are
independent. Thus, we have

∑

s∈S

W (y|x; s)PS|q(S)(s|q(s))PQ(q(s)) = PY (y), (4.26)
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which does not depend on x. This implies the symmetrizability of the channel in
a trivial manner, with U(s|x, q) = PS|q(S)(s|q), which leads to a contradiction.

Now, the proof of Theorem 4.1 proceeds as follows.

Proof of Theorem 4.1. First, note that by [47, Lemma 3.1] we have

max
PX

min
PS|q(S)

I(PX , W̄S) = min
PS|q(S)

max
PX

I(PX , W̄S). (4.27)

The converse part of this theorem follows by applying Lemma 4.5 and
Lemma 4.6.

By Lemma 4.4, non-symmetrizability implies that I(P ) > 0 for every
strictly positive P . In order to prove that for a non-symmetrizable PAVC,
maxP I(P ) is an achievable rate, we use the continuity of I(P ) as a function
of P and by applying Lemma 4.12, we conclude the achievability part of The-
orem 4.1.

The following lemma, Lemma 4.5, is similar to [45, Lemma 1] and describes
the converse part of the proof when the channel is symmetrizable.

Lemma 4.5. For a symmetrizable PAVC, any deterministic code of block
length n with K ≥ 2 codewords, each of type P has

E [ēd(S)] = max
PS|q(S)

∑

s∈Sn

ēd(s)PS|q(S)(s|q(s))PQn(q(s)) ≥ 1

4
. (4.28)

Proof. Consider an arbitrary code with codeword set {x1, . . . ,xK} and decoder
φ, where xi = (xi1, . . . , xin) for i ∈ [1 : K]. For some U ∈ U(X × Q → S)
satisfying (4.14) consider K random sequences Sj = (Sj1, . . . , Sjn) where Sj ∈
Sn, with statistically independent components, where

P [Sjk = s] = U(s|xjk, q(s))PQ(q(s)). (4.29)

Then for each pair (i, j) and every y = (y1, . . . , yn) ∈ Yn we can write

E [Wn(y|xi,Sj)] =
n∏

k=1

E [W (yk|xik, Sjk)]

=

n∏

k=1

∑

s∈S

W (yk|xik, s)U(s|xjk , q(s))PQ(q(s)). (4.30)

So, by using (4.14), it follows that

E [Wn(y|xi,Sj)] = E [Wn(y|xj ,Si)], (4.31)
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and hence for i 6= j we have

E [ed(i,Sj)] + E [ed(j,Si)] =

=
∑

y: φ(y) 6=i

E [Wn(y|xi;Sj)] +
∑

y: φ(y) 6=j

E [Wn(y|xj ;Si)]

≥
∑

y∈Yn

E [Wn(y|xi;Sj)]

= 1. (4.32)

Now, using this fact we can write

1

K

K∑

j=1

E [ēd(Sj)] =
1

K2

K∑

i=1

K∑

j=1

E [ed(i,Sj)]

≥ 1

K2
· K(K − 1)

2

=
K − 1

2K
, (4.33)

so it follows that for some j ∈ [1 : K] we have

E [ēd(Sj)] ≥
K − 1

2K
≥ 1

4
. (4.34)

This leads to the desired result because E [ēd(S)] ≥ 1/4 for some distribu-
tion over S such that the kth element of the random sequence S is dis-
tributed independently according to the distribution of the form PS|q(S)PQ

where PS|q(S)(s|q) = U(s|xjk, q). So in general we have maxPS|q(S)
E [ēd(S)] ≥

1/4.

The following lemma, Lemma 4.6, is similar to [45, Lemma 2] and describes
the converse part of the proof when the rate is greater than I(P ).

Lemma 4.6. For any δ > 0 and ǫ < 1, there exists n0 such that for any code
of block length n ≥ n0 with codewords, each of type P , 1

n logK ≥ I(P ) + δ
implies

E [ēd(S)] = max
PS|q(S)

∑

s∈Sn

ēd(s)PS|q(S)(s|q(s))PQn(q(s)) > ǫ. (4.35)

Proof. Suppose that P ∗
S|q(S) achieves the minimum in (4.23). So for

PXSY (x, s, y) = P (x)PQ(q(s))P
∗
S|q(S)(s|q(s))W (y|x; s) (4.36)

we have I(X ;Y ) = I(P ).
Now consider any code with codewords {x1, . . . ,xK} and decoder φ, and let

S = (S1, . . . , Sn) be n independent realization of S according to the distribution
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P ∗
S|q(S)PQ. Then we can write

E [ēd(S)] =
1

K

K∑

i=1

E [ed(i,S)]

=
1

K

K∑

i=1

∑

y:φ(y) 6=i

E [Wn(y|xi;S)]

=
1

K

K∑

i=1

∑

y:φ(y) 6=i

n∏

j=1

E [W (yj |xij ;Sj)]. (4.37)

If we introduce a new discrete memory-less channel (DMC) W̄S defined by

W̄S(y|x) = E [W (y|x;S)] =
∑

s∈S

W (y|x; s)PS|q(S)(s|q(s))PQ(q(s)), (4.38)

then we have E [ēd(S)] = ē(W̄S), where ē(W̄S) is the average probability of error

when the given code is used on the DMC W̄S .
Now, notice that (4.36) means that Y is connected to X by the channel W̄S .

As mentioned before, we have I(X ;Y ) = I(P ) so by the strong converse to the
coding theorem for a DMC with codewords of type P (see [46, Corollary 1.4,
p.104]), ē(W̄S) is arbitrary close to 1 if 1

n logK ≥ I(P )+δ and n is large enough.
This completes the proof of Lemma 4.6.

In order to prove the achievability part of Theorem 4.1, we need to define
a suitable decoder φ. Here, we will use the same decoder as introduced in [45,
Definition 3].

Definition 4.4 ([45, Definition 3]). Given the codewords {x1, . . . ,xK}, let
φ(y) = i if and only if an s ∈ Sn exists such that

1. the joint type Pxi,s,y belongs to Dη;

2. for each competitor j 6= i, such that Pxj ,s′,y ∈ Dη for some s′ ∈ Sn, we
have I(XY ;X ′|S) ≤ η, where X,X ′, S, Y denote dummy random vari-
ables such that PXX′SY = Pxi,xj ,s,y.

If no such i exists, we set φ(y) = 0, i.e., declare an error.

Before proceeding further, let us state the following lemmas (Lemma 4.7-
Lemma 4.9) which are some basic bounds on types (e.g., see [46, Chapter 1]).

Lemma 4.7. The number of possible joint types of sequences of length n is a
polynomial in n.

Lemma 4.8. If TX 6= ∅, we have

(n+ 1)−|X | exp {nH(X)} ≤ |TX | ≤ exp{nH(X)}, (4.39)

and if TY |X(x) 6= ∅, we have

(n+ 1)−|X ||Y| exp {nH(Y |X)} ≤ |TY |X(x)| ≤ exp{nH(Y |X)}. (4.40)
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Lemma 4.9. For any channel V : X 7→ Y, we have

∑

y∈TY |X (x)

V n(y|x) ≤ exp {−nD(PXY ||PX × V )} , (4.41)

where PX × V denotes the distribution on X × Y with pmf PX(x)V (y|x) and
V n(y|x) ,∏n

t=1 V (yt|xt).

The set of codewords {x1, . . . ,xK} used in proving the achievability result is
any set with the properties stated in Lemma 4.10. It is shown in [45, Appendix]
that a randomly chosen codeword set have these properties with probability
arbitrarily close to 1.

Lemma 4.10 ([45, Lemma 3]). For any ǫ > 0, n ≥ n0(ǫ), K ≥ exp(nǫ), and
type P , there exist codewords {x1, . . . ,xK} in Xn, each of type P , such that
for every x ∈ Xn, s ∈ Sn, and every joint type PXX′S , by setting R = 1

n logK,
we have

|{j : (x,xj , s) ∈ TXX′S}| ≤ exp
{
n
(
|R− I(X ′;XS)|+ + ǫ

)}
, (4.42)

1

K
|{i : (xi, s) ∈ TXS}| ≤ exp(−nǫ/2), if I(X ;S) > ǫ, (4.43)

and

1

K
|{i : (xi,xj , s) ∈ TXX′S for some j 6= i}| ≤ exp(−nǫ/2)

if I(X ;X ′S)− |R− I(X ′;S)|+ > ǫ. (4.44)

In addition to Lemma 4.10, we need Lemma 4.11 (which is similar to [45,
Lemma 4]), in order to establish the inambiguity of the decoding rule given in
Definition 4.4.

Lemma 4.11. If the PAVC is non-symmetrizable and β > 0, then for a suffi-
ciently small η, no set of random variables X,X ′, S, S′, Y can simultaneously
satisfy

PX = PX′ = P with min
x∈X

P (x) ≥ β, (4.45)

PXSY ∈ Dη, PX′S′Y ∈ Dη, (4.46)

and
I(XY ;X ′|S) ≤ η, I(X ′Y ;X |S′) ≤ η. (4.47)

Proof. The proof technique is very similar to the proof of [45, Lemma 4].

So assuming that the decoder φ is being used as defined in Definition 4.4,
lemma 4.11 proves that this decoder is unambiguously defined if η is chosen
sufficiently small. In fact, if for some y ∈ Yn and some i 6= j, both xi and
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xj satisfied conditions (1) and (2) in Definition 4.4, then some s and s′ would
exist, with the joint types of (xi,xj , s, s

′,y) represented by the dummy ran-
dom variables X,X ′, S, S′, Y (i.e., (xi,xj , s, s

′,y) ∈ TXX′SS′Y ) that satisfy
conditions stated in Lemma 4.11. This is in contradiction with Lemma 4.11.

The following lemma, Lemma 4.12, provides the error analysis for the de-
coder given in Definition 4.4.

Lemma 4.12. Given any non-symmetrizable PAVC and arbitrary β > 0, δ >
0, for any block length n ≥ n0 and any type P with minx P (x) > β, there exists
a code with codewords {x1, . . . ,xK}, each of type P , such that

1

n
logK > I(P )− δ, (4.48)

and

max
PS|q(S)

E [ēd(S)] = max
PS|q(S)

∑

s∈Sn

ēd(s)PS|q(S)(s|q(s))PQn(q(s))

< exp(−nγ). (4.49)

Here, n0 and γ > 0 depend only on the given PAVC, and on β and δ.

Proof. Let {x1, . . . ,xK} be as in Lemma 4.10, with R = 1
n logK satisfying

I(P )− δ < R < I(P )− 2

3
δ, (4.50)

and with ǫ (from Lemma 4.10) to be specified later. Let the decoder φ be as
defined in Definition 4.4. Lemma 4.11 proves that this decoder φ is unambigu-
ously defined if η is chosen sufficiently small.

To bound the decoding error, let us fix PS|q(S) and write

E [ēd(S)] =
∑

s∈Sn

ēd(s)PS|q(S)(s|q(s))PQn(q(s))

=
∑

s∈Sn

1

K

K∑

i=1

∑

y: φ(y) 6=i

Wn(y|xi; s)PS|q(S)(s|q(s))PQn(q(s))

=
∑

TŜ

∑

s∈TŜ

PS|q(S)(s|q(s))PQn(q(s))


 1

K

K∑

i=1

∑

y: φ(y) 6=i

Wn(y|xi; s)




︸ ︷︷ ︸
≤1

.

(4.51)

For η ≥ 0, let us define a family of distribution PS of random variables S with
values from the set S by

Sη ,
{
PS : D

(
PS ||PQ × PS|q(S)

)
≤ η

}
, (4.52)
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where PS|q(S) is arbitrary and PQ is the pmf over the channel classes of the
PAVC, i.e., it is known and fixed. Then, by [46, Lemma 2.6, p.32], we may
bound summation over PS|q(S)(s|q(s))PQn(q(s)) as follows

∑

s∈TŜ

PS|q(S)(s|q(s))PQn(q(s)) ≤
∑

s∈TŜ

PQn(q(s))

= PQn(TQ̂)

≤ exp
{
−nD(PQ̂||PQ)

}
, (4.53)

where PQ̂ is the distribution on q(Ŝ) which is implied by PŜ . Now by Lemma 4.7,
we have

E [ēd(S)] ≤

≤
∑

TŜ :
PŜ∈Sη

∑

s∈TŜ

PS|q(S)(s|q(s))PQn(q(s))


 1

K

K∑

i=1

∑

y: φ(y) 6=i

Wn(y|xi; s)




︸ ︷︷ ︸
ēd(s)

+ exp (−nη
2
). (4.54)

The rest of the proof is similar to that of [45, Lemma 5]. By fixing s such
that Ps ∈ Sη and following similar steps stated in [45, Lemma 5], we may
bound the inner term in front of summation in the above expression and show
that it is exponentially vanishing as n → ∞. This in fact completes the proof
of Lemma 4.12.

However, for completeness, we will state the rest of the proof as well. As we
mentioned before, let us fix s such that Ps ∈ Sη and observe that by (4.43)
and Lemma 4.7 we have

1

K

∣∣∣∣∣∣



i : (xi, s) ∈

⋃

I(X;S)>ǫ

TXS





∣∣∣∣∣∣
≤ (number of joint types) · exp(−nǫ/2)

≤ exp(−nǫ/3), (4.55)

for n larger than a suitable threshold n0, that depends on ǫ.

So, in order to obtain an exponentially decreasing upper bound on ēd(s) (for
those s such that Ps ∈ Sη), it is sufficient to consider only those codewords xi

for which (xi, s) ∈ TXS with I(X ;S) ≤ ǫ. Then, for PXSY /∈ Dη (see (4.22)),
we have

D(PXSY ||PXS ×W ) = D(PXSY ||PX × PQ × PS|q(S) ×W )− I(X ;S)

> η − ǫ, (4.56)
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and thus by Lemma 4.9, we can write

∑

y∈TY |XS(xi,s)

Wn(y|xi; s) ≤ exp {−D(PXSY ||PXS ×W )}

≤ exp{−n(η − ǫ)}. (4.57)

Hence by Lemma 4.7, we have

∑

y: Pxi,s,y
/∈Dη

Wn(y|xi; s) ≤ exp {−n(η − 2ǫ)} . (4.58)

Next, note that if Pxi,s,y ∈ Dη and φ(y) 6= i, then condition (2) of Defini-
tion 4.4 must be violated. So let us denote by Eη the set of all joint distribu-
tions PXX′SY such that (i) PXSY ∈ Dη; (ii) PX′S′Y ∈ Dη for some S′; and (iii)
I(XY ;X ′|S) > η. Then, it follows that

∑

y: Pxi,s,y
∈Dη

φ(y) 6=i

Wn(y|xi; s) ≤
∑

PXX′SY ∈Eη

eXX′SY (i, s), (4.59)

where

eXX′SY (i, s) ,
∑

y: (xi,xj ,s,y)∈TXX′SY

for some j 6= i

Wn(y|xi; s), (4.60)

and the summation (4.59) extends to all joint types PXX′SY ∈ Eη (of course,
eXX′SY (i, s) = 0 unless PX′ = PX = P and PXS = Pxi,s).

Combining (4.55)-(4.59), for those s such that Ps ∈ Sη, we obtain that

ēd(s) ≤ exp{−nǫ/3}+ exp{−n(η − 2ǫ)}

+
1

K

K∑

i=1

∑

PXX′SY ∈Eη

eXX′SY (i, s). (4.61)

Before finding an upper bound for eXX′SY (i, s), note that it is sufficient to do
so only when PXX′SY ∈ Eη satisfies

I(X ;X ′S) ≤ |R− I(X ′;S)|+ + ǫ, (4.62)

otherwise, by (4.44), we have

1

K
|{i : (xi,xj , s) ∈ TXX′S for some j 6= i}| < exp{−nǫ/2}. (4.63)

Since (xi,xj , s) ∈ TXX′S for some j 6= i is a necessary condition for eXX′SY (i, s) >
0 (see (4.60)), it follows from Lemma 4.7 that the contribution to the double
summation in (4.61) of the terms with PXX′SY ∈ Eη not satisfying (4.62) is
less than exp{−nǫ/3}.
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Now, from (4.60), we can write

eXX′SY (i, s) ≤
∑

j:(xi,xj ,s)∈TXX′S

∑

y∈TY |XX′S(xi,xj ,s)

Wn(y|xi; s). (4.64)

Because Wn(y|xi; s) is constant for y ∈ TY |XS(xi, s) and this constant is less
than or equal to (|TY |XS(xi, s)|)−1, the inner sum in (4.64) is bounded above
by ∣∣TY |XX′S(xi,xj , s)

∣∣ ·
(∣∣TY |XS(xi, s)

∣∣)−1
, (4.65)

which in turn, by Lemma 4.8, is less than or equal to exp{−n[I(Y ;X ′|XS)−ǫ]}.
Now by using (4.42), it follows from (4.64) that

eXX′SY (i, s) ≤ exp
{
−n
[
I(Y ;X ′|XS)− |R − I(X ′;XS)|+ − 2ǫ

]}
. (4.66)

In order to further bound eXX′SY (i, s) when (4.62) holds, we distinguish be-
tween two cases: a) R ≤ I(X ′;S), and b) R > I(X ′;S).

For the case a), from (4.62) we have

I(X ;X ′|S) ≤ I(X ;X ′S) ≤ ǫ, (4.67)

and hence by condition (iii) in the definition of Eη, we can write

I(Y ;X ′|XS) = I(XY ;X ′|S)− I(X ;X ′|S) ≥ η − ǫ. (4.68)

Since for this case we have R ≤ I(X ′;S) ≤ I(X ′;XS), it follows from (4.66)
that

eXX′SY (i, s) ≤ exp{−n(η − 3ǫ)}. (4.69)

In case b), from (4.62) we have

R > I(X ;X ′S) + I(X ′;S)− ǫ
= I(X ′;XS) + I(X ;S)− ǫ
≥ I(X ′;XS)− ǫ, (4.70)

and hence

|R − I(X ′;XS)|+ ≤ R− I(X ′;XS) + ǫ. (4.71)

Substituting this into (4.66) it follows that

eXX′SY (i, s) ≤ exp {−n [I(X ′;XSY )−R− 3ǫ]}
≤ exp {−n [I(X ′;Y )−R− 3ǫ]} . (4.72)

Note that PXX′SY ∈ Eη implies that PX′S′Y ∈ Dη for some S′. So by
definition of Dη given in (4.22), PX′S′Y is arbitrary close to PX′′S′′Y ′′ ∈ D0

defined by PX′′S′′Y ′′ = P × PQ × PS′|q(S′) ×W . Now if η is sufficiently small,
then I(X ′;Y ) is arbitrarily close to I(X ′′;Y ′′), say, I(X ′;Y ) ≥ I(X ′′;Y ′′)−δ/3.
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Using the definition of I(P ) given in (4.23) and the assumption (4.50), we can
write

I(X ′;Y )−R ≥ I(X ′′;Y ′′)− δ/3−R ≥ I(P )− δ/3−R ≥ δ/3, (4.73)

if η is sufficiently small and depends only on δ. Fixing η accordingly and also
small enough for the decoding rule to be unambiguous, (4.72) yields for case
b) that

eXX′SY (i, s) ≤ exp

{
−n
[
δ

3
− 3ǫ

]}
. (4.74)

Now, from (4.61), by using (4.69) and (4.74) and Lemma 4.7, we obtain that

ēd(s) ≤ exp(−nǫ/4), (4.75)

if, for instance, ǫ ≤ min[η/4, δ/10] and n is sufficiently large. Because the bound
holds uniformly for those s such that Ps ∈ Sη, then by substituting it into
(4.54) and using Lemma 4.7, the proof of Lemma 4.12 becomes complete.

4.B Capacity of a PAVC with Stochastic Encoder: Proof of
Theorem 4.2

Proof of Theorem 4.2. Because deterministic codes are special cases of codes
with stochastic encoder, the achievability part of this theorem directly follows
from that of Theorem 4.1.

The converse part of the theorem follows from similar steps that have been
used in the proof of Theorem 4.1, i.e., Lemma 4.5 and Lemma 4.6.

When the rate is greater than I(P ), defined in (4.23), the converse proof
follows from the converse proof of randomized codes, i.e., Lemma 4.14, by
choosing the random decoder Φ to be a fixed decoder φ (this does not change
any part of the proof). When the channel is symmetrizable, the converse follows
from Lemma 4.13 and this completes the proof.

Lemma 4.13. For a symmetrizable PAVC, any stochastic code of block length
n with K ≥ 2 codewords, each of type P has

E [ēd(S)] = max
PS|q(S)

∑

s∈Sn

ēd(s)PS|q(S)(s|q(s))PQn(q(s)) ≥ 1

4
. (4.76)

Proof. Consider an arbitrary stochastic code (Ψ, φ) which is defined over the
message setM = {1, . . . ,K}. Let the random variable Ψ be defined over a set
of L encoders

{
ψ(1), . . . , ψ(L)

}
with a pmf PΨ where PΨ(l) is the probability

of choosing the lth encoder ψ(l).

For some U ∈ U(X×Q → S) satisfying (4.14) considerK random sequences
Sj = (Sj1, . . . , Sjn) where Sj ∈ Sn, j ∈ [1 : K], is chosen according to the
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following distribution

P [Sj = s] =

L∑

l=1

[
n∏

k=1

U(sk|ψ(l)(j)k, q(sk))PQ(q(sk))

]
PΨ(l)

=

[
L∑

l=1

n∏

k=1

U(sk|ψ(l)(j)k, q(sk))PΨ(l)

] [
n∏

k′=1

PQ(q(sk′))

]

=

[
L∑

l=1

n∏

k=1

U(sk|ψ(l)(j)k, q(sk))PΨ(l)

]

︸ ︷︷ ︸
PS|q(S)

PQn(q(s)). (4.77)

Then for each pair (i, j) and every y = (y1, . . . , yn) ∈ Yn we can write

ESj
[EΨ [Wn(y|Ψ(i);Sj)]] =

= EΨ

[
∑

s∈Sn

[
n∏

k=1

W (yk|Ψ(i)k; sk)

]
P [Sj = s]

]

= EΨ

[
L∑

l=1

[
∑

s∈Sn

n∏

k=1

W (yk|Ψ(i)k; sk)U(sk|ψ(l)(j)k, q(sk))PQ(q(sk))

]
PΨ(l)

]

=

L∑

l′=1

L∑

l=1

[
∑

s∈Sn

n∏

k=1

W (yk|ψ(l′)(i)k; sk)U(sk|ψ(l)(j)k, q(sk))PQ(q(sk))

]
PΨ(l)PΨ(l

′)

=

L∑

l′=1

L∑

l=1

[
n∏

k=1

∑

s∈S

W (yk|ψ(l′)(i)k; s)U(s|ψ(l)(j)k, q(s))PQ(q(s))

]
PΨ(l)PΨ(l

′).

(4.78)

So, by using (4.14), it follows that

ESj
[EΨ [Wn(y|Ψ(i);Sj)]] = ESi

[EΨ [Wn(y|Ψ(j);Si)]], (4.79)

and hence for i 6= j we have

ESj
[et(i,Sj)] + ESi

[et(j,Si)] =

=
∑

y: φ(y) 6=i

ESj
[EΨ [Wn(y|Ψ(i);Sj)]] +

∑

y: φ(y) 6=j

ESi
[EΨ [Wn(y|Ψ(j);Si)]]

≥
∑

y∈Yn

ESj
[EΨ [Wn(y|Ψ(i);Sj)]]

= 1. (4.80)

Now, from here on the proof is very similar to that of Lemma 4.5. Using the
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above fact we can write

1

K

K∑

j=1

ESj
[ēt(Sj)] =

1

K2

K∑

i=1

K∑

j=1

ESj
[et(i,Sj)]

≥ 1

K2
· K(K − 1)

2

=
K − 1

2K
, (4.81)

so it follows that for some j ∈ [1 : K] we have

ESj
[ēt(Sj)] ≥

K − 1

2K
≥ 1

4
. (4.82)

This leads to the desired result because E [ēt(S)] ≥ 1/4 for some distribution
over S of the form PS|q(S)PQn where PS|q(S) is given in (4.77). So in general
we have maxPS|q(S)

E [ēd(S)] ≥ 1/4 and we are done.

4.C Randomized Code Capacity of a PAVC: Proof of
Theorem 4.3

Suppose that there are k non-negative-valued functions l1, . . . , lk on S where
for simplicity we assume that mins∈S li(s) = 0. Given Λ1, . . . ,Λk, we say that
s ∈ Sn satisfies state constraints Λ1, . . . ,Λk, if li(s) ≤ Λi for all i, where

l(s) =
1

n

n∑

t=1

l(st), s ∈ Sn. (4.83)

By applying the same method of [47], the result of [47, Theorem 3.1] can be
extended to multiple state constraints as stated in the following result.

Theorem 4.5. The randomized code capacity of the AVC (4.3) under state
constraint Λ1, . . . ,Λk, denoted by Cr

avc(Λ), is determined in [47], and is given
by

Cr
avc(Λ1, . . . ,Λk) = max

PX

min
PS :∀i E[li(S)]≤Λi

I(PX , W̄S)

= min
PS :∀i E[li(S)]≤Λi

max
PX

I(PX , W̄S). (4.84)

Proof of Theorem 4.3. The converse part, using a similar argument to [47,
Lemma 3.2 and Theorem 3.1], follows from Lemma 4.14. In the following we
prove the achievability part.

Define an AVC with the following convergent state constraints. For each
i ∈ Q, define a non-negative-valued function li on s ∈ Sn as

li(s) ,
1

n

n∑

t=1

1q(st)=i. (4.85)
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For any ǫ > 0, consider the state constraints

|li(s)− PQ(i)| ≤ ǫ, ∀i ∈ Q. (4.86)

By Theorem 4.5, the capacity of the AVC under the state constraints (4.86) is

Cr
avc(PQ, ǫ) , max

PX

min
PS :

∀i∈Q, |P[q(S)=i]−PQ(i)|≤ǫ

I(PX , W̄S)

= min
PS :

∀i∈Q, |P[q(S)=i]−PQ(i)|≤ǫ

max
PX

I(PX , W̄S), (4.87)

where we use E [li(S)] = P [q(S) = i]. By the monotonicity and the continuity
of Cr

avc(PQ, ǫ) as a function of ǫ,

Cr
pavc = sup

ǫ>0
Cr

avc(PQ, ǫ). (4.88)

Then we show that any rate R < Cr
pavc = supǫ>0C

r
avc(PQ, ǫ) is achievable for

PAVC.
Pick an ǫ0 such that R < Cr

avc(PQ, ǫ0), which is possible by (4.88). Fix any
ε > 0 and δ > 0. Choose ε′ with 0 < ε′ < ε. Since R is achievable for the AVC
with the state constraints (4.86), with ε′ in place of ǫ and for sufficiently large
n, there exists a random code (Ψ,Φ) of blocklength n, rate larger than R− δ
and

ēr(s) ≤ ε′ (4.89)

for all state sequences satisfying (4.86) with ε′ in place of ǫ. For a random
sequence S of PAVC, by Hoeffding’s inequality,

P [|li(S)− PQ(i)| ≤ ǫ0, ∀i ∈ Q] ≥ 1− 2 exp(−2ǫ20n). (4.90)

For random code (Ψ,Φ) with sufficiently large n such that 2 exp(−2ǫ20n) <
ε− ε′, we have

E [ēr(S)] ≤ E [ēr(S)| |li(S)− PQ(i)| ≤ ǫ0, ∀i ∈ Q]
+ P [|li(S)− PQ(i)| > ǫ0, for some i ∈ Q]

< ε′ + ε− ε′. (4.91)

Thus for sufficiently large n, there exists blocklength n random code for PAVC
with rate larger than R − δ and E [ēr(S)] < ε. Therefore, R is achievable for
PAVC. This completes the proof of the theorem.

Lemma 4.14. For any δ > 0 and ǫ < 1, there exists n0 such that for any
randomized code (Ψ,Φ) of block length n ≥ n0, having

1

n
logK ≥ min

PS|q(S)

max
PX

I(PX , W̄S) + δ (4.92)

implies

E [ēr(S)] = max
PS|q(S)

∑

s∈Sn

ēr(s)PS|q(S)(s|q(s))PQn(q(s)) > ǫ. (4.93)
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Proof. Let us fix PS|q(S) and assume that PX = P ∗ achieves the maximum
of I(PX , W̄S) for this choice. Now, let S = (S1, . . . , Sn) be n independent
realization of S according to the distribution PS|q(S)PQ. Then we can write

E [ēr(S)] =
1

K

K∑

i=1

E [er(i,S)]

=
1

K

K∑

i=1

ES [EΨ,Φ [e(i,S,Ψ,Φ)]]

=
1

K

K∑

i=1

EΨ,Φ


 ∑

y:Φ(y) 6=i

ES [Wn(y|Ψ(x);S)]




= EΨ,Φ


 1

K

K∑

i=1

∑

y:Φ(y) 6=i

n∏

j=1

ESj
[W (yj |Ψ(x)j ;Sj)]


. (4.94)

All of the random variables Sj are i.i.d., so if we introduce a new discrete
memory-less channel (DMC) W̄S defined by

W̄S(y|x) = E [W (y|x;S)],

then we have

E [ēr(S)] = EΨ,Φ


 1

K

K∑

i=1

∑

y:Φ(y) 6=i

n∏

j=1

W̄S(yj |Ψ(x)j)


,

= EΨ,Φ

[
ē(W̄S)(Ψ,Φ)

]
, (4.95)

where ē(W̄S)(ψ, φ) is the average probability of error when a code (ψ, φ) is used

on the DMC W̄S . Now, by using the strong converse to the coding theorem
for the DMC W̄S , every code (ψ, φ) of rate R ≥ maxPX

I(PX , W̄S) + δ has an
average error probability ē(W̄S)(ψ, φ) arbitrary close to 1 if n is large enough.
So as a result, for every ǫ < 1 we have E [ēr(S)] > ǫ and this completes the
proof.



“Everywhere is within walking

distance if you have the time.”

- Steven Wright

Compressed Network Coding

Vectors 5
Practical networks being subject to random delays, synchronization errors,

and even packet erasures, nodes failures, and topology changes, it is not viable
to assume that the linear combinations performed at the intermediate nodes
are deterministically known at the receivers.

Two approaches have been proposed in the literature to address this. The
first has a coding vector appended to each packet [20]. This vector keeps track
of the linear combination of the source packets the coded packet contains.
The receivers use this information to solve a system of linear equations and
recover the original data. The second approach uses subspace coding [1]. The
information is conveyed by a subspace that the source selects; the receivers to
decode simply need to decide which was the sent subspace. In this case the
receiver needs no information about the linear combinations that the network
nodes perform to decode. Both these approaches divide the source packets into
generations and allow combining only among packets in the same generation.
As far as we know, these are the only two approaches currently proposed.

The first approach comes at the cost of the coding vectors overhead. This
overhead would be acceptable for large packets, however, in wireless applica-
tions, where packets are much shorter, it can very fast become prohibitive.
Even in wired networks, the trade-off between a larger generation, which em-
ploys longer coding vectors, and a smaller generation, which may not allow
mixing of packets and reduce the NC benefits, is a subject of research in the
community.

From an information theoretic point of view discussed in Chapter 3, the
second approach, subspace coding, results in higher information rates for short
packet length (more precisely for small field size), but as the packet length
increases, achieves the same information rate as having the coding vectors
overhead.

87
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In this chapter we present a third approach that is not a special case of
the previous two. Our approach employs shortened or compressed coding vec-
tors to efficiently convey the coding coefficients. The observation our approach
leverages is that, the classic design of coding vectors allows potentially all
source packets to get combined together; however, for some networks, this is
too strong a requirement (see Section 5.1 for examples), and results in too low
an information rate. In our approach we thus propose to employ coding vectors
that allow at most m source packets to get combined. This naturally occurs
in some applications, where for example only source packets originating from
neighboring nodes get combined. We can also artificially restrict the number
of source packets that get combined, by appending to each coded packet a few
bits to count the number of source packets it contains. Note that, the receiver
will eventually still need to solve a set of n linear equations to retrieve the
source data; our approach only shortens the coding vectors that convey these
linear combinations.

Our design problem can now be stated as follows. Given a generation that
contains n source packets, each receiver is going to observe packets that contain
linear combinations of at most m source packets. We want to design coding
vectors that allow us, by receiving each combined packet, to determine which
linear combination of the source packets it contains. The classical coding vectors
design would utilize coding vectors of length n. In this chapter we explore what,
under our assumptions, is the smallest length r of coding vectors we need to
employ, and how can we select them. A key point of our design is that we
require the intermediate node operation to be oblivious to the coding vectors
employed, and in particular, to not perform compression operations.

Form much smaller than n, our approach can also be viewed as compressing
the classical coding vectors, and our problem can be cast in a compressed
sensing framework. Moreover, in this case, solving the set of n linear equations
at the receiver becomes more efficient, since we can take advantage of the low
density of the linear combinations to decode with belief propagation techniques.

It is important to mention that this chapter has been done as a joint work
with Lorenzo Keller 1.

5.1 Problem Statement

Consider a dissemination protocol where the nodes in the network per-
form linear NC, i.e., linearly combine their incoming packets. One or multiple
sources, not necessarily collocated, produce independent information packets,
that we will call source packets. The source(s) packets get divided into sets
called generations. Assume that each generation contains n source packets
{x1, . . . ,xn} where xi ∈ FL

q .
As we have discussed in Section 2.2, the classical coding vector approach ap-

pends to each source packet xi a coding vector xC
i . Each receiver that receives

1. Lorenzo Keller is a Ph.D. student at Ecole Polytechnique Fédérale de Lausanne
(EPFL), working under the supervision of prof. Christina Fragouli.



5.1. Problem Statement 89

n packets p1, . . . ,pn, with linearly independent coding vectors can recover the
original source information by solving the linear system of equations (see (2.18))




pI
1

pI
2
...
pI
n


 =




β11 β12 · · · β1n
β21 β22 · · · β2n
...

...
. . .

...
βn1 βn2 · · · βn




︸ ︷︷ ︸
H∈Fn×n

q




xI
1

xI
2
...
xI
n


 . (5.1)

However, this approach comes at the overhead of the coding vectors, that can
fast become impractical, as the following example illustrates.

Example 5.1. Consider a sensor network consisting of 100 nodes, each send-
ing a message to a sink. To implement NC using coding vectors over a field
of size q = 24 we would need to use 50 Bytes of each packet simply for the
coding vectors. In the TinyOs operating system [22], which is perhaps the most
popular for sensor nodes, a typical frame length allows approximately 30 bytes
for data transmissions. Thus clearly this is not a viable approach.

As an alternative scheme, as explained in Section 2.2, subspace coding dis-
penses of the need to convey coding vectors. In this scheme, source(s) can only
communicate information using subspaces which are unaffected by the linear
operations performed on them. As it is shown in Chapter 3, this approach is op-
timal in terms of achievable information rates. When the length of the packets
is small subspace coding results in higher transmission rate but as the length
increases, essentially, it results in the same information rate as the coding vec-
tors approach. Moreover, as the following example illustrates, code design is
not trivial when multiple sources insert data in the network 2.

Example 5.2. We here argue that designing subspace codes for the case where
the sources are not collocated is challenging. Consider the case where n sources
employ codebooks Ci, i ∈ [1 : n], consisting of subspaces of the vector space FL

q ,
i.e.,

Ci =
{
π
(i)
j : π

(i)
j ⊑ FL

q , 1 ≤ j ≤ |Mi|
}
, i ∈ [1 : n], (5.2)

where Mi is the message set for the ith source. To transmit information to
the sink, source i maps a measured value to one such subspace π and inserts
in the network dim(π) vectors that span π. In relaying information towards
the sink, each sensor linearly combines all packets it has received (including
that generated by itself) and transmits the combined packet to the next relays
towards to the sink. As a result, the sink will observe vectors from the union
of subspaces inserted by all the sources. In particular, if source i inserts the
subspace πi, the sink will observe vectors from the subspace π1 + π2 + · · ·+ πn.

2. Note that the coding scheme introduced in Section 3.4 achieves the optimal performance
asymptotically in the field size (packet length). However, when the field size is not large the
problem of subspace code design for multiple sources become a hard problem.
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Table 5.1 – An example of subspace coding for two sources.

C2/C1 π1 π2 π3

π4 π1 + π4 π2 + π4 π3 + π4

π5 π1 + π5 π2 + π5 π3 + π5

π6 π1 + π6 π2 + π6 π3 + π6

Using the knowledge of the codebooks {Ci}ni=1, the sink needs to decode the
source data.

To be able to correctly decode at the receiver, we need to ensure that every
combination of source data results in a distinct union subspace. We call this
the identifiability property. Assume for simplicity we have two source nodes,
S1 using the codebook C1 = {π1, π2, π3}, while S2 using the codebook C2 =
{π4, π5, π6}. Table 5.1 summarizes all outcomes.

For this code to be identifiable, we want all entries in Table 5.1 to correspond
to distinct subspaces. For example, π1 + π4 should be a distinct subspace from
π2 + π5.

This problem is hard to solve even for the case of two sources, and a very
small codebook (in our example each node transmits only 3 values). Designing
such a code for multiple sources is clearly a challenging task.

In both of the previous approaches, a common underlying assumption is
that, all source packets may get combined in the network. Given that clearly
this can be a too strong requirement for many practical networks, we here relax
it, and require that each coded packets contains a linear combination of at most
m out the n source packets. This allows us to use coding vectors whose length
grows sub-linearly with n, resulting in a more efficient network communication.
In the following we in turn discuss, how we can design such coding vectors, and
how we utilize them in decoding, i.e., how we can retrieve the linear coefficients
of the combined source packets. We also discuss what is the smallest required
length, and what are the benefits we can expect to get.

5.2 Main Result

Here, we express the main result of this chapter as it is stated in Theo-
rem 5.1.

Theorem 5.1. Consider a NC scenario where each generation consists of n
source(s) packets x1, . . . ,xn. Moreover, we assume that every packet p travers-
ing the network does not contain any linear combinations of more than m of the
original source(s) packets, where m ≤ n. Then, if m < n

2 , there exists an end-
to-end coding scheme that result in shorter coding vectors. More specifically, if
m < n

4 then the length of coding vectors behaves asymptotically as O(m logn)
instead of n.
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In the next section, we will provide our coding scheme and prove the result
of Theorem 5.1.

5.3 Compressing the Coding Vectors

In this section, we present our scheme for the compression of coding vectors.

5.3.1 Code Design

Consider a network performing linear NC, where each coded packet contains
the linear combination of at most m source packets. For m much smaller than
n, the classical coding vectors become sparse. We can thus compress them, by
replacing them with shorter vectors, that still allow the receivers to extract
the original coding vectors and decode the sources messages. Our construction
utilizes properties of algebraic error correcting codes, and proceeds as follows.

Select a linear code C = [n, k, d]q where d = min[2m + 1, n + 1] with k as

large as possible. Consider the r × n parity check matrix HC where r , n− k.
As coding vector, assign to source packet xi the ith column of the matrix HC ,
which we will denote as hi. That is,

hi = ei ·HT
C . (5.3)

We call these vectors compressed coding vectors. Thus the sources insert to the
network the packets

xi = [hi | xI
i ]. (5.4)

Intermediate nodes linearly combine their received packets. The coded packets
propagating in the network will now have the form

p , [p̂C | pI ], (5.5)

where p̂C ∈ Fr
q denotes the compressed coding vector appended to packet

p. This is related to the classical coding vector pC that describes the linear
transform from the source packets as

p̂C = pC ·HT
C . (5.6)

If m packets are allowed to be combined, with m much smaller than the length
n of the coding vector pC , this can be viewed as compressing the sparse vector
pC , and hence the compressed coding vector terminology.

The reason this construction enables receivers to decode follows from a well
known property the columns of matrix HC satisfy. If a code C has minimum
distance d, then any set of d − 1 columns of the matrix HC are linearly in-
dependent [48]. Moreover, given that at most m source packets get combined,
hwt(pC) ≤ m where hwt(·) denotes the Hamming weight of a vector, the num-
ber of non-zero elements. The following lemma states that we will be able to
recover the original coding vectors from the compressed ones.
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Lemma 5.1. There is an injective map between pC , hwt(pC) ≤ m, and p̂C

related by (5.6).

Proof. For two pC
1 6= pC

2 where hwt(pC
1 ) ≤ m and hwt(pC

2 ) ≤ m we have
hwt(pC

2 − pC
1 ) ≤ min[2m,n]. But the minimum distance of HC is min[2m +

1, n+ 1] so (pC
2 − pC

1 ) ·HT
C 6= 0 which leads to p̂C

1 6= p̂C
2 .

Example 5.3. Suppose the number of packets in every generation is n = 15
and each packet in the network contains linear combinations of at most m = 2
packets which leads to d = 2m + 1 = 5. Let also q = 24. The code C can
be chosen to be the Reed-Solomon code with parameters C = [15, 11, 5]24. The
parity check matrix of C can be written as follows

HC =




1 α α2 · · · α15−1

1 α2 α4 · · · α2(15−1)

1 α3 α6 · · · α3(15−1)

1 α4 α8 · · · α4(15−1)


 , (5.7)

where α is a primitive element of F24 . Each column of HC can be assigned to
one of n = 15 source packets.

5.3.2 Decoding

Upon receiving a packet p with compressed coding vector p̂C , the receiver
needs to recover the original coding vector to construct the system of linear
equation in (5.1).

In our construction, the problem of finding the original coding vector pC

from the compressed coding vector p̂C reduces to a decoding problem. In the
coding theory terminology, we need to find the error vector having access only
to the syndrome of a received vector. More formally, we may write

find pC

subject to hwt(pC) ≤ m,
pC ·HT

C = p̂C .
(5.8)

This problem is in general NP-complete [49]. However, coding theory identi-
fies instances that accept efficient encoding and decoding algorithms, and we
leverage these constructions.

Note that, it is sufficient to find what are the non-zero positions of pC . If
we know the non-zero positions, using the knowledge of the matrix HC , we
can uniquely recover the linear coefficients in the original coding vectors. The
following lemma from coding theory formalizes this observation [50].

Lemma 5.2. Let C be a linear code in Fn
q with parity check matrix HC. Assume

a codeword x is sent and a word y is received, with error vector e, where
y = x + e. Suppose we know a set J with at most d(C) − 1 elements that
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Table 5.2 – Time for exhaustive search in seconds. Experiments are run on a
single core of an Intel Centrino Duo2, at 3 GHz.

n/m 2 3 4

15 0.00018 0.0020 0.017

31 0.00097 0.024 0.48

63 0.0047 0.24 10.4

contains the set of error positions; i.e., non-zero elements of e. Then the error
vector e is the unique solution of the following linear equations:

êHT
C = yHT

C and êj = 0 for all j /∈ J. (5.9)

The above lemma shows that we can reduce the problem of recovering the
original coding vector to the problem of finding the non-zero positions of the
original coding vector.

One approach to achieve this is through exhaustive search. For small values
for m and n this in a fast computer can be feasible, as Table 5.2 illustrates.
However, there are

(
n
m

)
possible m-sets of non-zero positions to consider. This

number grows exponentially in n when m
n converges to a non-zero number.

A more practical approach is to use some known algebraic codes for C like
BCH code, Reed-Solomon code [51], Goppa code [52], algebraic geometry codes
[53], etc., to recover the original coding vectors efficiently. For all of the codes
mentioned above there exists a version of the Berlekamp-Massey algorithm
[54], [55] which allows the receivers to find the location of non-zero elements of
original coding vectors as well as their values, using only the syndrome.

The Berlekamp-Massey algorithm consists of three stages that can be briefly
summarized as follows. The first stage is the calculation of syndrome which in
our approach we have it for free, since the received compressed coding vectors
are equivalent to syndromes of original coding vectors. The second stage is to
find the error locator polynomial which is defined as following

λ(z) ,

τ∏

r=1

(1− αirz) =

τ∑

r=0

λiz
r, (5.10)

where i1, . . . , iτ are the non-zero elements of pC , τ ≤ t, and α is a primitive
nth root of unity. Finally, receivers find the roots of λ(z) to find the location
of non-zero components of pC and using Lemma 5.2 can retrieve the original
coding vectors.

5.3.3 Benefits

Using the compressed coding vectors method, the length of coding vectors
reduces from n to r = n− k. The following lemma shows the optimality of our
construction in terms of r.

Lemma 5.3. The proposed construction leads to the shortest length possible
for compressed coding vectors.
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Proof. The problem of finding the shortest representation for a sparse vector
of length n and sparsity at most m over Fq is equivalent to the problem of
designing the highest rate code with length n and minimum distance 2m+1 over
Fq. Indeed, if one could find a smaller representation for the compresses coding
vectors that still lets recovering the original coding vectors, i.e., optimization
problem given by (5.8) is solvable, this implies that there exist a higher rate
code with the specified parameters.

We now examine what is the required size r for different cases. From the
Singleton bound for code C we have

k ≤ n− d+ 1 = n−min[2m,n],

so for n
2 ≤ m ≤ n we have k = 0 which implies that we can select w.l.o.g.

the full rank n × n parity matrix HC to be the identity matrix. In this case,
we recover the usual NC with coding vectors {ei}ni=1 appended to the sources
packets, and there is no benefit from our approach.

From the Gilbert-Varshamov bound [56] we have an upper bound for the
length of compressed coding vectors r that for the casem < n

4 can be simplified
to

r ≤ nHq

(
d− 1

n

)
= nHq

(
2m

n

)
, (5.11)

where Hq(δ) = δ logq(q − 1)− δ logq δ− (1− δ) logq(1− δ) is the q-ary entropy
function. Also, the Sphere packing bound leads to a lower bound on the length
of compressed coding vectors where for m < n

2 we can simplify it to obtain

r ≥ nHq

(
d− 1

2n

)
− 1

2
logq

(
4(d− 1)

(
1− d− 1

2n

))

= nHq

(m
n

)
− 1

2
logq

(
8m
(
1− m

n

))
. (5.12)

From (5.11) and (5.12), for fixed values of m, and as the number of source
packets grows, we have

m logq n+O(1) ≤ r ≤ 2m logq n+O(1),

So using the proposed method, we can reduce the growth of coding vectors
from O(n) to O(m log n).

Example 5.4. Using a table of the best codes known (from [48] and [57]), we
can see for example that, there exist binary linear codes of length n = 127 with
redundancy r = 35 and minimum distance d = 2m+1 = 11, which is in fact a
shortened version of [128, 93, 11]2 Goppa code [52]. Thus in a network with 127
source packets in each generation if at most m = 5 source vectors get combined,
we need to use coding vectors of length r = 35 instead of n = 127.

In the previous example, it is assumed that the network nodes perform
binary NC; i.e., nodes only XOR the packets. However, if the field size is in-
creased, a shorter compressed coding vectors can be used as it is shown in the
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Figure 5.1 – Bounds on the length of the compressed coding vectors, r. Upper
figure: r as a function of the number of packets in a generation n, when m = 2
and m = 20 sources get combined, q = 2. Lower figure: r as a function of
n when m = 10 sources get combined, for two values of field size q = 2 and
q = 128.

Example 5.5. In fact the code used in Example 5.4 is not a MDS 3 code while
the Reed-Solomon code in Example 5.5 is MDS.

Example 5.5. It is known that the Reed-Solomon code [51] is a linear code
[n, k, d]q where n = q − 1 and k + d − 1 = n. To compare the length of
compressed coding vectors resulting from the Reed-Solomon code as in Exam-
ple 5.4, consider a field of size q = 27, which leads to n = 127. Also set

3. Maximum distance separable.
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d = 2m + 1 = 11 for the redundancy; the length of compressed coding vec-
tors equals r = n − k = d − 1 = 10 where the ratio of the compressed coding
vector length to the original coding vector length is much lower than that of Ex-
ample 5.4. Compared to the case of classical coding vectors, the coding vector
headers decrease from 112 Bytes to only 9 Bytes.

5.3.4 Effect on Rate

A natural question to ask is, if we restrict the number of combined packets,
how does this affect the observed multicasting rate. This clearly depends not
only on the value of m, but also on the network topology and on the subsets
of m packets that get combined. For example, for some networks, no coding is
required to achieve the min-cut rate for all receivers. It is also easy to come up
with specifically constructed examples, where we cannot achieve the min-cut
rate unless all source packets get combined.

However, as we argued in Section 5.1, in many situations, such as the case
of multi-source wireless networks, it is not practical to allow all possible linear
combinations to occur. Additionally, in preliminary experiments we are per-
forming, we see that the number of actually combined packets depends on the
distance from the receiver and the number of sources in the vicinity, and can
be much smaller than the total number of sources in the network, as sources
that are topologically separated may very rarely have their packets combined.

One possible way to abstract this problem is the following. Consider again
the linear equations that the receiver needs to solve in (5.1) and assume that
the non-zero elements in the n× n matrix H are chosen uniformly at random
with probability m/n. For each non-zero position, a uniformly at random non-
zero coefficient from the field Fq is then selected. This will result in a sparse
matrix H , where each row will have on the average m non-zero elements from
Fq per row (coding vector). From [58], we have the following lemma.

Lemma 5.4. For every c ≥ 0 there exist a constant ac such that for the random
matrix H ∈ Fn×n

q , n > ec, with m = logn− c we have

P [rank(H) < n] ≤ ac
q
. (5.13)

Proof. See [58, Corollary 2.4].

The work in [59] has extended the above lemma and showed that for
m > logn the probability that the matrix H is not full rank approaches zero
polynomially fast with n. The above argument shows that m should be at
least order O(log n) to let receivers end up with full rank matrix H with high
probability.

5.4 Concluding Remarks

In this chapter, we have presented a novel approach for practical NC that
uses shortened coding vectors as compared to the classical approach.We showed
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that we can reduce the length of the coding vectors from n to O(m log n) where
n is the number of source packets injected in the network, if each coded packet
contains the combination of at most m source packets.

5.4.1 Joint Identity-Message Coding

We may combine ideas from this chapter and Chapter 3 (Section 3.4) to
propose a coding scheme for sensor network applications where the identity
of the sensor nodes form the bulk of the messages being transmitted towards
a destination. To this end, we have proposed a communication protocol for
such networks, where sensor identities and measurements are jointly encoded
in fixed-size vectors. We refer interested readers to [60, 23].

The basic idea behind the proposed protocol is to assign a different code-
book to each sensor and let each sensor implicitly convey its identity through
its choice of codebook. We realize this using subspace encoding: each reporting
sensor communicates its identity by generating a set of vectors that represent
a distinct subspace—distinct from the subspaces generated by all other sen-
sors. By combining incoming vectors, intermediate nodes essentially produce
different (compact) representations of the subspaces generated by the reporting
sensors.

The benefits of this scheme consist of balancing the transmission load across
all nodes in the network (important for networks that are periodically recharged
through natural resources), low-complexity network operations, and graceful
incorporation of error resilience.





Part II

Subspace Properties of Network

Coding

99





“In theory, theory and practice

are the same. In practice, they

are not.”

- Albert Einstein

Subspace Properties of Network

Coding and their Applications 6
Randomized NC offers a promising technique for content distribution sys-

tems. In randomized NC, each node in the network combines its incoming
packets randomly and sends them to its neighbors [4, 20]. This is the approach
adopted by most practical applications today. For example, Avalanche, the first
implementation of a peer-to-peer (P2P) system that uses NC, adopts such a
randomized operation [61, 62]. In ad-hoc wireless and sensor networks as well,
most proposed protocols employing NC again opt for randomized network op-
eration (see [63] and references therein).

Our contributions start with the observation that coding vectors (more gen-
erally message packets) implicitly carry information about the network struc-
ture as well as its state 1. Such vectors belong to appropriately defined vector
spaces, and we are interested in fundamental properties of these vector spaces
(defined over a finite field). In particular, since we are investigating properties
induced by randomized NC, we need to characterize random subspaces of the
aforementioned vector spaces. These properties of random subspaces over finite
fields might be of independent interest. We aim to show, using these properties,
that observing the coding vectors we can passively collect structural and state
information about a network. We can leverage this information towards several
applications that are interesting in their own merit, such as topology infer-
ence, network tomography, and network management (we do not claim here
the design of practical protocols that use these properties). However, we show
that randomized NC, apart from its better known properties for facilitating
information delivery, can provide us with information about the network itself.

To support this claim, we start by studying the problem of passive topology
inference in a content distribution system where intermediate nodes perform
randomized NC. We show that the subspaces nodes collect during the dissem-

1. By state we refer to link or node failures, congestion in some part of the network, etc.

101



102 Subspace Properties of Network Coding and their Applications

ination process have a dependence with each other which is inherited from the
network structure. Using this dependence, we describe the conditions that let
us perfectly reconstruct the topology of a network, if subspaces of all nodes at
some time instant are available.

We then investigate a reverse or dual problem of topology inference, which
is, finding the location of Byzantine attackers. In a network coded system,
the adversarial nodes in the network can disrupt the normal operation of in-
formation flow by inserting erroneous packets into the network. We use the
dependence between subspaces gathered by network nodes and the topology of
the network to extract information about the location of attackers. We propose
several methods, compare them and investigate the conditions that allow us to
find the location of attackers up to a small uncertainty.

Finally, we observe that the received subspaces, even at one specific node,
reveal some information about the network, such as the existence of bottle-
necks or congestion. We consider P2P networks for content distribution that
use randomized NC techniques. It is known that the performance of such P2P
networks depends critically on the good connectivity of the overlay topology.
Building on our observation, we propose algorithms for topology management
to avoid bottlenecks and clustering in network-coded P2P systems. The pro-
posed approach is decentralized, inherently adapts to the network topology,
and reduces substantially the number of topology rewirings that are necessary
to maintain a well connected overlay; moreover, it is integrated in the normal
content distribution.

6.1 Related Work

Network coding started by the work of Ahlswede et al. [6] who showed that
a source can multicast information at a rate approaching the smallest min-cut
between the source and any receiver if the middle nodes in the network combine
the information packets. Li et al. [5] showed that linear NC with finite field size
is sufficient for multicast. Koetter et al. [7] presented an algebraic framework
for linear NC.

Randomized NC was proposed by Ho et al. [4, 64] where they showed that
randomly choosing the network code leads to a valid solution for a multicast
problem with high probability if the field size is large. It was later applied by
Chou et al. [20] to demonstrate the practical aspects of random linear NC.
Gkantsidis et al. [61, 62] implemented a practical file sharing system based on
this idea. Several other works have also adopted randomized NC for content
distribution, see for example [65, 66], and [67].

Network error correcting codes, that are capable of correcting errors inserted
in the network, have been developed during the last few years. For example see
the work of Koetter et al. [1], Jaggi et al. [68], Ho et al. [69], Yeung et al. [70,
71], Zhang [72], and Silva et al. [73]. These schemes are capable of delivering
information despite the presence of Byzantine attacks in the network or nodes
malfunction, as long as the amount of undesired information is limited. These
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network error correcting schemes allow to correct malicious packet corruption
up to certain rate. In contrast, we use NC to identify malicious nodes in our
work. Recently, and following our work [74], additional approaches are proposed
in the literature, some building on our results [75].

Overlay topology monitoring and management that do not employ network
coding has been an intensively studied research topic, see for example [76].
However, in the context of NC, it is a new area of research. Fragouli et al. [77, 78]
took advantage of NC capabilities for active link loss network monitoring where
the focus was on link loss rate inference. Passive inference of link loss rates has
also been proposed by Ho et al. [79]. In a subsequent work of ours, Sharma et
al. [37] study passive topology estimation for the upstream nodes of every
network node. This work is based on the assumption that the local coding
vectors for each node in the network are fixed, generated in advance and known
by all other nodes in the network, unlike our work that builds on randomized
operation. The idea of passive inference of topological properties from subspaces
that are build over time, as far as we know, is a novel contribution of this work.

6.2 Models: Coding and Network Operation

A simple observation motivates much of the work presented in this chapter:
the subspaces gathered by the network nodes during information dissemination
with randomized NC, are not completely random, but have some relationship,
and this relationship conveys information about the network topology as well
as its state. We will thus investigate properties of the collected subspaces and
show how we can use them for diverse applications. To this end, we will use
the basic results developed in Section 2.4 for the randomly sampled subspaces
over a finite field.

Different properties of the subspaces are relevant to each particular appli-
cation and therefore we will develop a framework for investigating these prop-
erties. This will also involve some understanding of modeling the problem to
fit the requirements of an application and then developing subspace properties
relevant to that model.

6.2.1 Notation

In this chapter, we are interested in investigating the relationship of the
collected subspaces at neighboring network nodes. We consider a network rep-
resented as a directed acyclic graph G = (V,E), with ϑ = |V | nodes and
ξ = |E| edges. If a node u has p parents u1, . . . , up, we denote with P (u) =
{u1, . . . , up} the set of parents of u. We use P l(u) to denote the set of all
ancestors of u at distance l from u in the network (we say that two nodes u
and v are at distance l if there exists a path of length exactly l that connects

them). We denote with π
(ui)
u (t) the subspace node u receives from parent ui

at exactly time t, and with πu(t) the whole subspace (from all parents) that

node u receives at time t, that is πu(t) =
∑p

i=1 π
(ui)
u (t). We also denote with
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Π
(ui)
u (t) the subspace node u has received from parent ui up to time t, that

is, Π
(ui)
u (t) = Π

(ui)
u (t− 1) + π

(ui)
u (t). Then the subspace Πu(t) that the node

has at time t can be expressed as Πu(t) =
∑p

i=1 Π
(ui)
u (t). For a set of nodes

U = {u1, . . . , up}, we define ΠU = Πu1 + · · ·+Πup
.

6.2.2 Network Operation

We assume that there is an information source located on a node S that has
a set of n packets (messages) {x1, . . . ,xn}, xi ∈ FL

q , to distribute to a set of
receivers, where each packet is a sequence of L symbols over the finite field Fq.
To do so, we will employ a dissemination protocol based on randomized network
coding, namely, where each network node sends random linear combinations
(chosen to be uniform over Fq) of its collected packets to its neighbors. We
assume for simplicity that there are no packet-losses.

6.2.2.1 Dissemination Protocol

It is possible to separate the dissemination protocols into the following
operation categories.

– Synchronous: All nodes are synchronized and transmit to their neighbors
according to a global clock tick (time-slot). At time-slot t ∈ N, node v
sends linear combinations from all vectors it has collected up to time
t− 1. Once nodes start transmitting information, they keep transmitting
until all receivers are able to decode.

– Asynchronous: Nodes transmit linear combinations at randomly and in-
dependently chosen time instants.

In this chapter, we focus on the synchronous network where we assume that
each link has unit delay 2 corresponding to each time-slot, however our results
can be extended to asynchronous networks as well.

Next, we explain in detail the dissemination protocol, that is summarized
in Algorithm 6.1.

Timing: We depict in Figure 6.1 the relative timing of events within a time-
slot. Nodes transmit at the beginning of a time-slot. We assume that each
packet is received by its intended receiver before the end of the time-slot. Thus,
the time-slot duration incorporates the packet propagation delay in one edge
of the network.

Rate Allocation and Equivalent Network Graph: The dissemination
protocol first associates with each link e of the network a rate re (measured as
the number of packets transmitted per time-slot on edge e). These rates are
selected in advance using a rate allocation method, for example see [80].

2. Unit delay can model a buffering window a node needs to wait to collect packets from
all its neighbors.
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Timet − 1 t

Slot number t

A

B

A Transmits

B Receives{
The point that
subspaces are
measured: ΠB(t)

ΠA(t − 1)

Figure 6.1 – Timing schedule of the dissemination protocol given by Algo-
rithm 6.1.

For the rest of the chapter, we consider an equivalent network graph, where
each edge e has capacity equal to its allocated rate re. On this new graph, we
can define the min-cut cv from the source node S to a node v ∈ V . Whenever
we refer to min-cut values in the following, we imply min-cut values over this
equivalent graph.

We assume that the rate allocation protocol we use satisfies

re ≤ min[ce, ctail(e)], (6.1)

where ce is the capacity of edge e. This very mild assumption says that the node
v = tail(e) does not send more information than it receives, and is satisfied by
all protocols that do not send redundant packets.

In this chapter, we consider the case where n≫ cv, namely, the dissemina-
tion of the n source packets to the receivers takes place by using the network
over several time-slots.

Node Operation: When the dissemination starts, at time-slot say zero, the
source starts transmitting at each time-slot and to each of its outgoing edges
e, re randomly selected linear combinations of n information packets. We will
call rS the source rate. The source continues until it has transmitted linear
combinations of all n packets, i.e., for n

rS
times-lots. Every other node v ∈

V \ {S} in the network, operates as follows:
– Initially it does not transmit, but only collects in a buffer packets from
its parents, until a time τv, which we call waiting time and we will define
in the following. As we will see, each node can decide the waiting time
by itself and independently from other nodes.

– At each time-slot t, for all t ≥ τv + 1, it transmits to each outgoing edge
e, re linear combinations of all packets it has collected in its buffer up to
time t− 1.

Collected Subspaces: We can think of each of the n source messages {xi}ni=1

as corresponding to one dimension of an n-dimensional space ΠS ⊑ FL
q where

ΠS = 〈x1, . . . ,xn〉. We say that node v ∈ V at time t observes a subspace
Πv(t) ⊑ ΠS , with dimension dv(t) , dim(Πv(t)), if Πv(t) is the space spanned
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by the received vectors at node v up to time t. Initially, at time t = 0, the
collected subspaces of all nodes (apart the source) are empty; dv(0) = 0,
∀v ∈ V \ {S}.

Waiting Times: We next define the waiting times, that will be used in the
following sections to ensure that the subspaces of different nodes be distinct,
and are a usual assumption in dissemination protocols; indeed, for large n the
waiting time does not affect the rate. For example, in the information-theoretic
proof of the main theorem in NC [6], each node waits until it collects at least
one message from each of its incoming links before starting transmissions.

Definition 6.1. The waiting time τv for a node v is the first time-slot during
which node v receives information from the source at a rate equal to its min-cut
cv, and additionally, has collected in its buffer a subspace of dimension at least
cv + 1.

Note that, because we are dealing with acyclic graphs, we can impose a
partial order on the waiting times of the nodes, such that all parents of a
node have smaller waiting time than the node. Moreover, each node can decide
whether the conditions for the waiting time are met, by observing whether it
receives information at a rate equal to its min-cut, and what is the dimension
of the subspace it has collected. That is, a node does not need to know any
topological information (apart from its min-cut), and the waiting times do not
need to be communicated in advance to the nodes, but can be decided online
based on the network conditions.

Algorithm 6.1 Dissemination protocol.

Input: G(V,E), S, n, {τv}, {re}
1: for all v ∈ V \ {S} do
2: Πv(0) = ∅, dv(0) = 0;
3: end for
4: t← 1
5: while minv dv(t) < n do
6: for all v ∈ V do
7: if t ≥ τv + 1 then
8: for all e ∈ Out(v) do
9: node v transmits from Πv(t− 1) on e with rate re;

10: end for
11: end if
12: end for
13: for all v ∈ V do
14: update Πv(t) and dv(t);
15: end for
16: t← t+ 1;
17: end while
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6.2.2.2 Source Operation and the Source Subspace ΠS

As we discussed, the source needs to convey to the receivers n source packets
that span the n-dimensional subspace ΠS = 〈x1, . . . ,xn〉, with ΠS ⊑ FL

q . ΠS

is isomorphic to Fn
q ; thus, for the purpose of studying relationships between

subspaces of ΠS , we can equivalently assume that ΠS = Fn
q , and that node

v ∈ V at time t observes a subspace Πv(t) ⊑ ΠS . This simplification is very
natural in the case where we employ coding vectors, reviewed briefly in the
following (see also Section 2.2), as we only need consider the coding vectors for
our purposes and ignore the remaining contents of the packets; however, we can
also use the same approach in the case where the source performs non-coherent
coding, described subsequently.

Use of Coding Vectors: To enable receivers to decode, as we have seen in
Section 2.2, the source assigns n symbols of each message packet to determine
the linear relation between that packet and the original packets xi, i = 1, . . . , n.
Each message vector xi contains two parts. The vector xC

i ∈ Fn
q with length

n is the coding vector and remaining part, xI
i ∈ FL−n

q , is the information part
where

xi = [xC
i | xI

i ]. (6.2)

For our purposes, it is sufficient to restrict our algorithms to examine the
coding vectors. Thus, the source has the space ΠS = Fn

q ; during the information
dissemination, if a node v at time t has collected m packets yi with coding
vectors yC

i , it has observed the subspace Πv(t) =
〈
yC
1 , . . . ,y

C
m

〉
. In other words,

the coding vectors capture all the information we need for our applications.

Subspace Coding: Our approach also works in the case of subspace coding
[1], that was briefly explained in Section 2.2.

In the case of subspace coding, the dissemination algorithm works in exactly
the same way as in the case of coding vectors; what changes is how the source
maps the information to the packets it transmits, and how decoding occurs.
However, this is orthogonal to our purposes, since we perform no decoding
of the information messages, but simply observe the relationship between the
subspaces different nodes in the network collect. Thus, the same approach can
be applied in this case as well.

6.2.3 Input to Algorithms

We are interested in designing algorithms that leverage the relationships
between subspaces observed at different network nodes for network manage-
ment and control. The algorithms design will depend on the information that
we have access to. We distinguish between the following.

– Global information: A central entity knows the subspaces that all ϑ nodes
in the network have observed.

– Local Information: There is no such omniscient entity, and each node v
only knows what it has received, its own subspace Πv.



108 Subspace Properties of Network Coding and their Applications

We may also have information between these two extreme cases. Moreover, we
may have a static view, where we take a snapshot of the network at a given
time instant t, or a non-static view, where we take several snapshots of the
network and use the subspaces’ evolution to design an algorithm.

We will argue in Section 6.4 that capturing even global information can be
accomplished with relatively low overhead (sending one additional packet per
node at the end of the dissemination protocol); thus, the algorithms we develop
even assuming global information can in fact be implemented almost passively
and at low cost.

6.3 Rate of Innovative Packets

In the following sections, we will need to know the rate of receiving in-
novative message vectors (packets) at receivers in a dissemination protocol
performing randomized NC. By innovative we refer to vectors that do not be-
long in the space spanned by already collected packets. As it is shown in [6],
the source can multicast at rate equal to the minimum min-cut of all receivers
if the intermediate nodes can combine the incoming messages. Moreover, it is
shown in [5] that using linear combinations is sufficient to achieve information
transfer at a rate equal to the minimum min-cut of all receivers. In [6, 4], it
is also demonstrated that choosing the coefficients of the linear combinations
randomly is sufficient (no network-specific code design is required) with high
probability if the field size is large enough.

To find the rate of receiving information at each node where the imple-
mented dissemination protocol performs randomized network coding, we can
use the following result given in Theorem 6.1. Note that our described dissem-
ination protocol, although very common in practice, does not exactly fit to the
previous theoretical results in the literature that examine rates, because the
operation of the network nodes is not memory-less. That is, while for example
in [4, 6, 5] each transmitted packet at time t is a function of a small subset
of the received packets up to time t (the ones corresponding to the same in-
formation message), in our case a packet transmitted at time t is a random
linear combination of all packets received up to time t. This small variant of
the main theorem on randomized NC is very intuitive, and we formally state
it in following.

Theorem 6.1. Consider a source that transmits n packets over a connected
network using the dissemination protocol described in Section 6.2.2, and assume
that the network nodes perform random linear NC over a sufficiently large finite
field. Then there exists t0 such that for all t > t0 each node v in the network
receives cv independent linear combinations of the n source packets per time
slot, where cv = min-cut(v).

Proof. Refer to Appendix 6.C.

Given Theorem 6.1, we can state the following definition.
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Definition 6.2. For a specific information dissemination protocol over a net-
work, we define the steady state as the time period during which each node v in
the network receives exactly cv independent linear combinations of the n source
packets per time slot and none of the nodes, except source S, has collected n
linearly independent combinations. We call the time that the network enters
steady state phase the steady state starting time and denote it by Ts. If the
network never attains the steady state phase then we set Ts =∞.

For our protocol in Section 6.2.2, Ts depends not only on the network
topology, but also on the waiting times τv. For the waiting time defined in
Definition 6.1 we can upper bound Ts as stated in Lemma 6.1.

Lemma 6.1. If n is large enough, for the dissemination protocol given in
Section 6.2.2 we may upper bound the steady state starting time as follows

Ts ≤ 2D(G), (6.3)

where D(G) is the longest path from the source to other nodes in the network 3.

Proof. Refer to Appendix 6.A.

In order to be sure that the dissemination protocol given in Section 6.2.2
enters the steady state phase, n should be large enough. Using Lemma 6.1 we
have the following result, Corollary 6.1.

Corollary 6.1. A sufficient condition for n to be sure that the protocol enters
the steady state is that

2D(G) < ⌊ n

cmax

⌋, (6.4)

where cmax = maxv∈V cv.

6.4 Topology Inference

In this section, we will use the tools developed in Section 2.4 to investigate
the relation between the network topology and the subspaces collected at the
nodes during information dissemination. We will develop conditions that allow
us to passively infer the network topology with (asymptotically on the value
of q) no error. The proposed scheme is passive in the sense that it does not
alter the normal data flow of the network, and the information rates that can
be achieved. In fact, we can think of our protocol as identifying the topology
of the network which is induced by the traffic.

We build our intuition starting from information dissemination in tree
topologies, and then extend our results in arbitrary topologies. Note that in-
formation dissemination using NC in tree topologies does not offer throughput
benefits as compared to routing; however, it is an interesting case study that

3. Note that D(G) is different from the longest shortest path which is called diameter of
G in the graph theory literature.
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will naturally lead to our framework for general topologies. We then define
conditions under which the topology of a tree and that of an arbitrary network
can be uniquely identified using the observed subspaces. Note that uniquely
identifying the topology is a strong requirement, as the number of topologies
for a given number of network nodes is exponential in the number of nodes.

6.4.1 Tree Topologies

Let G = (V,E) be a network that is a directed tree of depth D(G), rooted
at the source node S. We will present (i) necessary and sufficient conditions
under which the tree topology can be uniquely identified, and (ii) given that
these conditions are satisfied, algorithms that allow us to do so.

We first consider trees where each edge is allocated the same rate c, and
thus the min-cut from the source to each node of the tree equals c. We then
briefly discuss the case of undirected trees. Finally we examine the case where
edges are allocated different rates, and thus nodes may have different min-cuts
from the source.

6.4.1.1 Common Min-Cut

Assume that each edge of the tree has the same capacity c (i.e., a rate
allocation algorithm has assigned the same rate re = c on each edge of the tree).
Thus all nodes in the tree have the same min-cut, equal to c. Then according
to the dissemination protocol introduced in Algorithm 6.1, each node v will
wait time τv, until it has collected a c + 1 dimensional subspace, and then
start transmitting to its children. Our claim is that, we can then identify the
network topology using a single snapshot of all nodes’ subspaces at a time t.
Before formally proving the result in Theorem 6.2, we will give some intuition
on why this is so, and why the waiting time is crucial to achieve this. We start
from an example on the simple network in Figure 6.2.

Example 6.1. Consider the tree in Figure 6.2 and assume that the edges have
unit capacity (c = 1). Algorithm 6.1 works as follows. At time t = 1, node A
receives a vector y1 from the source S. Node A waits, as it has not yet collected
a (c + 1) = 2 dimensional subspace. At time t = 2, it receives a vector y2. It
now has collected the subspace ΠA(2) = 〈y1,y2〉, and thus at the next time-slot
it will start transmitting. At time t = 3, node A transmits vectors yB

1 and yC
1

to nodes B and C respectively, with yB
1 ,y

C
1 ∈ ΠA(2). Thus ΠB(3) =

〈
yB
1

〉
and

ΠC(3) =
〈
yC
1

〉
. Node A also receives a vector y3 from the source, and thus

ΠA(3) = 〈y1,y2,y3〉. Consider now the subspaces ΠA(3), ΠB(3) and ΠC(3).
We see that ΠB(3) ⊑ ΠA(3), and ΠC(3) ⊑ ΠA(3); we thus conclude that nodes
B and C are children of node A. Moreover, ΠB(3) 6= ΠC(3), which will allow
us to distinguish between children of these two nodes when we deal with larger
trees.

In contrast, if Algorithm 6.1 did not impose a waiting time, and node A
started transmitting to nodes B and C at time t = 2, then both nodes B and C
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Figure 6.2 – Directed tree with four nodes rooted at the source S.

would receive the same subspace 〈y1〉, i.e., ΠB(2) = ΠC(2) = 〈y1〉. In fact, at
all subsequent times, we will have that ΠB(t) = ΠC(t) = ΠA(t − 1). Thus, we
would not be able to distinguish between these two nodes.

The main idea in our result is that, if we consider two nodes u and v in the
network which have collected subspaces Πu(t) and Πv(t) at time t, then, unless
u and v have a child-ancestor relationship (i.e., are on the same branch in the
tree), it holds that Πu(t) * Πv(t) and Πv(t) * Πu(t).

The challenge in proving this is that we deal with subspaces evolving over
time, and thus we cannot directly apply the results in Section 2.4. For exam-
ple, for the network in Figure 6.2, ΠB(t) and ΠC(t) are not subspaces that are
selected uniformly at random from ΠA(t); instead, they are build over time as
ΠA(t) also evolves. We will thus need the following two results, that modify the
results in Section 2.4 to take into account the time evolution in the creation of
the subspaces. We start by examining in Lemma 6.2 the relationship between
subspaces collected at the immediate children of a given parent node (for ex-
ample, at the children B and C of node A). These are created by sampling
the same subspaces (those at node A). We then examine in Corollary 6.2 the
relationship between subspaces collected at nodes that have different parents
(for example, a node that has B as parent and a node that has C as parent).

Lemma 6.2. Suppose there exist (proper) subspaces Π(0) ⊏ Π(1) ⊏ · · · ⊏
Π(t − 1) with dimensions d0, . . . , dt−1, respectively. Let us construct the set of

subspaces Πu(i), i = 1, . . . , t, as follows. Set Πu(i) =
∑i

j=1 πu(j) where πu(j)
is the span of ku(j) vectors chosen uniformly at random from Π(j − 1) such
that ku(1) < d0 and ku(j) ≤ (dj−1 − dj−2) for j = 2, . . . , t. Similarly, we

construct the set of subspaces Πv(i) =
∑i

j=1 πv(j) where for kv(j) we have
similar conditions, namely, kv(1) < d0 and kv(j) ≤ (dj−1 − dj−2) for j =
2, . . . , t. Then we have

Πu(i) * Πv(j) and Πv(j) * Πu(i) ∀i, j ∈ {1, . . . , t}, (6.5)
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with high probability.

Proof. Refer to Appendix 6.A.

Corollary 6.2. Suppose that there exist two set of subspaces {Πu(i)}t−1
i=0 and

{Πv(i)}t−1
i=0 such that Πu(0) ⊏ · · · ⊏ Πu(t − 1) and Πv(0) ⊏ · · · ⊏ Πv(t − 1).

Moreover, assume that Πu(i) * Πv(j) and Πv(j) * Πu(i) ∀i, j ∈ [0 : t−1]. Now,
construct two set of subspaces {Πa(i)}ti=1 and {Πb(i)}ti=1 by setting Πa(i) =∑i

j=1 πa(j) and Πb(i) =
∑i

j=1 πb(j) where πa(i) is chosen uniformly at random
from Πu(i − 1) and πb(i) is chosen uniformly at random from Πv(i − 1) (with
some arbitrary dimension). Then we have

Πa(i) * Πb(j) and Πb(j) * Πa(i) ∀i, j ∈ {1, . . . , t}, (6.6)

with high probability.

Proof. Refer to Appendix 6.A.

Theorem 6.2. Consider a tree of depth D(G) where each edge has capacity c,
and the dissemination Algorithm 6.1. A static global view of the network at time
t, with 2D(G) < t < ⌊nc ⌋, allows to uniquely determine the tree structure with
high probability, if the waiting times are chosen according to Definition 6.1.

Proof. We will say that a node of the tree is at level l if it has distance l from
the source. In a tree there exists a unique path Pu = {S, P lu−1(u), . . . , P (u), u}
from source S to node u at level lu of the network.

If we consider a time t in steady state (where all nodes have nonempty
subspaces and none has collected the whole space), then clearly using Algo-
rithm 6.1 for dissemination in the network for the nodes along the path Pu it
holds that

Πu(t) ⊏ ΠP (u)(t) ⊏ · · · ⊏ ΠP lu−1(u)(t) ⊏ ΠS . (6.7)

Note that the conditions on t ensure that the network is in steady-state.
To identify the topology of the tree it is sufficient to show that Πu(t) * Πv(t)

for any node v that is not in Pu. Let lu and lv be the distance of u and v from
the source, respectively.

First, we observe that, starting from the source, by applying Lemma 6.2
and Corollary 6.2 and because of Definition 6.1 the subspaces of the nodes at
the same level (same distance from the source) are different at all times. So it
only remains to check the condition Πu(t) * Πv(t) for those node v that are
not in the same level as u.

Consider two cases. First, if lu < lv then let v′ be the ancestor of v at the
same level as u. By Corollary 6.2 we have Πu(t) * Πv′(t) so Πu(t) * Πv(t)
because Πv(t) ⊑ Πv′ (t).

Now consider the second case, lu > lv. We start by assuming Πu(t) ⊑
Πv(t) and then we will show that this assumption leads to a contradiction. Let
u′ be the ancestor of u at the same level of v. Then we make the following
observation. If at time t we have Πu(t) ⊑ Πv(t) by Lemma 2.9 we should have
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had ΠP (u)(t − 1) ⊑ Πv(t) and so ΠP 2(u)(t − 2) ⊑ Πv(t) and finally we should
had had Πu′(t − lu + lv) ⊑ Πv(t). But according to Corollary 6.2 this is a
contradiction because u′ and v are at the same level.

In the above argument, we have shown that ΠP (u)(t) is the smallest sub-
space contains Πu(t) among all nodes’ subspaces at time t. So we are done.

Assume now that Theorem 6.2 holds. To determine the tree structure, it
is sufficient to determine the unique parent each node has. From the previous
arguments, the parent of node u is the unique node v such that Πv(t) is the
minimum dimension subspace that contains Πu(t). Then, the parent of node u
is the node v such that

v = argmin
w∈V : duw=du

dw. (6.8)

As we will discuss in Section 6.4.3, collecting the subspace information from the
network nodes can be implemented efficiently. The algorithm that determines
the tree topology reduces this information to only two “sufficient statistics”:
the dimension of each subspace du = dim(Πu), ∀u ∈ V, and the dimension of
the intersection of every two subspaces duv = dim(Πu ∩ Πv), ∀u, v ∈ V , as
described in Algorithm 6.2, assuming that the conditions of Theorem 6.2 hold.

Algorithm 6.2 Finding the network topology for a tree.

Input: {du}, {duv}
Output: the network topology G(V,E)
1: for all u ∈ V do
2: if du = n then
3: u← S;
4: else
5: node u has as parent the node v with v = argmin

w∈V : duw=du

dw;

6: end if
7: end for

6.4.1.2 Directed v.s. Undirected Network

In a tree with a single source, since new information can only flow from
the source to each node along a single path, whether the network is directed
or undirected makes no difference. In other words, from (6.7), all vectors that
a node will send to its predecessor will belong in the subspace the predeces-
sor already has. Thus Theorem 6.2 still holds for undirected networks with a
common min-cut.

6.4.1.3 Different Min-Cuts

Assume now that the edges of the tree have different capacities, i.e., assigned
different rates. In this case, the proof of Theorem 6.2 still holds, provided that
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the condition in Theorem 6.2 is modified to

2D(G) < t < ⌊ n

cmax
⌋, (6.9)

where cmax = maxv∈V cv.
We underline that this theorem would not hold without the assumption

in (6.1). Without this condition, it is possible that we cannot distinguish be-
tween nodes at same level with a common parent as explained in the following
example.

Example 6.2. If in the network in Figure 6.2, edge SA has unit capacity,
while edge AB and AC have capacity two. In this case it is easy to see that
there exists t0 such that ΠB(t) = ΠC(t) = ΠA(t− 1), ∀t ≥ t0. Clearly in this
case, we cannot distinguish between nodes B and C with this dissemination
protocol.

6.4.2 General Topologies

Consider now an arbitrary network topology, corresponding to a directed
acyclic graph. An intuition we can get from examining tree structures is that,
we can distinguish between two topologies provided all node subspaces are
distinct. This is used to identify the unique parent of each node. In general
topologies, it is similarly sufficient to identify the parents of each node, in
order to learn the graph topology. The following theorem claims that having
distinct subspaces is in fact a sufficient condition for topology identifiability
over general graphs as well.

Theorem 6.3. In a synchronous network employing randomized NC over Fq,
a sufficient condition to uniquely identify the topology with high probability as
q ≫ 1, is that

Πu(t) 6= Πv(t) ∀ u, v ∈ V, u 6= v, (6.10)

for some time t. Under this condition, we can identify the topology by collecting
global information at times t and t+1, i.e., two consecutive static views of the
network.

Proof. Assume node u has the p parents P (u) = {u1, . . . , up}. Let

Π(u1)
u (t), . . . ,Π(up)

u (t), (6.11)

denote the subspaces node u has received from its parents up to time t, where

Πu(t) =
∑p

i=1 Π
(ui)
u (t). From construction it is clear that Π

(ui)
u (t+1) ⊑ Πui

(t).
To identify the network topology, it is sufficient to decide which node v ∈ V

is the parent that sent the subspace Π
(ui)
u (t) to node u for each i, and thus

find the p parents of node u. We claim that, provided (6.10) holds, node u
has as parent the node v which at time t has the smallest dimension subspace

containing Π
(ui)
u (t + 1). Thus we can uniquely identify the network topology,

by two static views, at times t and t+ 1, as Algorithm 6.3 describes.
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Indeed, let π
(ui)
u (t) denote the subspace that node u receives from parent

ui at exactly time t, that is, Π
(ui)
u (t+ 1) = Π

(ui)
u (t) + π

(ui)
u (t+ 1). For each i ∈

{1, . . . , p}, if π(ui)
u (t+1) * Πv(t) for all v ∈ V \{ui}, clearly Π

(ui)
u (t+1) * Πv(t)

for all v ∈ V \{ui}, and we are done. Otherwise, using Lemma 2.9 and because

(6.10) holds, with high probability we have π
(ui)
u (t + 1) * Πv(t) for all v ∈ V

except those nodes that their subspaces contain Πui
(t). So we are done.

Note that to identify the network topology, we need to know, for all nodes
u, the dimension du , dim(Πu(t)) of their observed subspaces at time t, the

dimension d
(i)
u , dim(Π

(ui)
u (t + 1)) for all parents ui of node u, and the di-

mension of the intersection of Π
(ui)
u (t + 1) with all Πw(t), w ∈ V , denoted as

d
(i)
wu , dim(Π

(ui)
u (t+ 1) ∩Πw(t)). Algorithm 6.3 uses this information to infer

the topology.

Algorithm 6.3 Finding the topology of a general network.

Input: {du}, {d(i)u }, {d(i)wu}
Output: the network topology G(V,E)
1: for all u ∈ V do
2: if du = n then
3: u← S;
4: else
5: for all i ∈ {1, . . . , pu} do
6: node u has as parent the node v with v = argmin

w∈V : d
(i)
wu=d

(i)
u

dw;

7: end for
8: end if
9: end for

The sufficient conditions (6.10) in Theorem 6.3, may or may not hold, de-
pending on the network topology and the information dissemination protocol.
Next, we will investigate for what network topologies the conditions (6.10) hold
for the dissemination Algorithm 6.1 so that the network is identifiable.

Lemma 6.3. Consider two arbitrary nodes u and v, where P (u) = {u1, . . . , upu
}

and P (v) = {v1, . . . , vpv
} are the parents of u and v respectively. Let ΠP (u)(t−

1) =
∑pu

i=1 Πui
(t− 1), and ΠP (v)(t− 1) =

∑pv

i=1 Πvi(t− 1). If Πu(t) = Πv(t) we
should have had ΠP (u)(t− 1) = ΠP (v)(t− 1) w.h.p.

Proof. Let us assume that Πu(t) = Πv(t) = Π. This implies that if πu(t) and
πv(t) are subspaces collected by nodes u and v at time t then,

Πu(t) = Πv(t) = Π

πu(t) + Πu(t− 1) = πv(t) + Πv(t− 1).

From construction, we have Π = Πu(t) ⊑ ΠP (u)(t − 1) and Π = Πv(t) ⊑
ΠP (v)(t− 1).
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On the other hand, since for every i, we randomly chose π
(ui)
u (t) from Πui

(t−
1) and since π

(ui)
u (t) ⊑ Π (because πu(t) ⊑ Π) using Lemma 2.9 we conclude

that we should have that Πui
(t−1) ⊑ Π which means we should have ΠP (u)(t−

1) ⊑ Π. Similarly, we should have ΠP (v)(t − 1) ⊑ Π. As a result, with high
probability, we have to have

ΠP (u)(t− 1) = ΠP (v)(t− 1) = Π,

and we are done.

Corollary 6.3. If Πu(t) = Πv(t) = Π for t > l we should have had ΠP l(u)(t−
l) = ΠP l(v)(t− l) = Π, w.h.p.

Proof. Consider the parents of nodes u and v as super-nodes P (u) and P (v).
Using a similar argument as stated in Lemma 6.3, we can conclude that the
parents of P (u) and P (v), denoted as P 2(u) and P 2(v), should satisfy

ΠP 2(u)(t− 2) = ΠP 2(v)(t− 2) = Π.

We use this argument l times to get the result.

Lemma 6.4. If the dissemination protocol is in the steady state, t ≥ Ts, we
could not have Πu(t) = Πv(t) unless nodes u and v have the same set of ances-
tors at some l level above in the network.

Proof. Because t ≥ Ts, we have du(t) = dim(Πu(t)) < n and dv(t) = dim(Πv(t)) <
n. Let us assume Πu(t) = Πv(t) = Π so we have d , du(t) = dv(t). From the
Corollary 6.3 we can write

ΠP l(u)(t− l) = ΠP l(v)(t− l) = Π,

for every l ≥ 1. Increasing l, two cases may happen. First, either P l(u) or
P l(v) contains the source node S that results in dim(ΠP l(u)(t − l)) = n or
dim(ΠP l(v)(t − l)) = n which is a contradiction since d < n. Second, nodes u
and v have the same set of ancestors at some level l.

Up to here, we have shown that assuming the dissemination protocol is in
the steady state the subspaces of two arbitrary nodes are equal only if they
have the same ancestors at some level above in the network. The following
result, Theorem 6.4 states sufficient conditions that make the nodes’ subspaces
different for dissemination Algorithm 6.1.

Theorem 6.4. Suppose two arbitrary nodes u and v have the same set of
parents P l = P l(u) = P l(v) at some level l. The following conditions are
sufficient so that the dissemination Algorithm 6.1 satisfies condition (6.10) 4:

ĉu , min-cut(P l, u) ≤ min-cut(S, P l) , cp,

ĉv , min-cut(P l, v) ≤ min-cut(S, P l) , cp.

4. Note that for the the min-cut cu to node u, cu , min-cut(S, u), we have cu =
min[ĉu, cp].
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Proof. Consider the set of nodes in P l. From the definition we know that there
exists at least one path of length l from each node in P l to the node u. But
also there might exist paths of length less than l from some nodes in P l to u.
If this is the case, because the topology is a directed acyclic graph, we can find
a subset P ′ of the nodes in P l such that it forms a cut for the node u and the
shortest path from each node in P ′ to u is l; see Figure 6.3. Moreover, we have
min-cut(S, P ′) = cp and min-cut(P ′, u) = ĉu.

Now assume that P ′ = {p1, . . . , pk} such that τp1 ≤ · · · ≤ τpk
. Let a1, . . . , ak,

be the accumulative min-cut from S to each node in P ′. By this we mean that
a1 = cp1 and a2 is the amount of increase in the min-cut from S by adding node
p2 and so on. We similarly consider the accumulative min-cut values from pi to
u and denote these by b1, . . . , bk. So we have

∑k
j=1 aj = cp and

∑k
j=1 bj = ĉu.

From definition of the waiting times (see Definition 6.1) we can write

dP ′(τ1) ≥ a1 + 1, (6.12)

dP ′(τ2) ≥ dP ′(τ1) + (τ2 − τ1)a1 + a2, (6.13)

dP ′(τk) ≥ dP ′(τk−1) + (τk − τk−1)

k−1∑

j=1

aj + ak. (6.14)

Then we have

dP l(τk) ≥ dP ′(τk)

≥ (τ2 − τ1)a1 + · · ·+ (τk − τk−1)

k−1∑

j=1

aj +

k∑

j=1

aj + 1. (6.15)

For du we can also write

du(τ1 + l) ≤ b1, (6.16)

du(τ2 + l) ≤ du(τ1 + l) + (τ2 − τ1)min[a1, b1] + b2, (6.17)

du(τk + l) ≤ du(τk−1) + (τk − τk−1)min



k−1∑

j=1

aj ,

k−1∑

j=1

bj


+ bk, (6.18)

or

du(τk + l) ≤ (τ2 − τ2)min[a1, b1]

+ · · ·+ (τk − τk−1)min



k−1∑

j=1

aj ,

k−1∑

j=1

bj


+

k∑

j=1

bj. (6.19)

From (6.15), (6.19) and the theorem assumptions we conclude that du(τk +
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l) < dP l(τk). Now for ∆t time-slots later we write

du(τk + l +∆t)
(a)

≤ du(τk + l) + ĉu∆t

(b)
< dP l(τk) + cp∆t

(c)
= dP l(τk +∆t), (6.20)

where (a) is true because u receives packets from P l with rate at most ĉu; (b)
is true because du(τk + l) < dP l(τk) and ĉu ≤ cp; and finally (c) is true because
after τk all of the nodes in P ′ receive packets at rate equal to their min-cut
which means that P ′ (the same is true for P l) receives packets at rate equal to
its min-cut cp.

The same inequality holds for the dimension of Πv(τk + l +∆t). Thus for
time t > τk + l we cannot have ΠP l(t− l) = Πu(t) and ΠP l(t− l) = Πv(t) if
ĉu ≤ cp and ĉv ≤ cp. So using Corollary 6.3 we are done.

DE

C

u

P (u)

A

B
P 2(u)

P ′

Figure 6.3 – Sets used in the proof of Theorem 6.4: the set P (u) contains the
parents of node u at distance l = 1; the set P 2(u) contains the set of parents at
distance l = 2; while P ′ is the subset of P 2(u) at distance no less than l = 2.

Intuitively, what Theorem 6.4 tell us is that, if for a node u there exists a
path that does not belong in any cut between the source and another node v,
then nodes u and v will definitely have distinct subspaces. The only case where
nodes u and v may have the same subspace is, if they have a common set of
parents, a common cut. Even then, they would need both of them to receive
all the innovative information that flows through the common cut at the same
time. Note that the condition of Theorem 6.4 are also necessary for identifiably
for the special case of tree topologies, such as the topology in Figure 6.2.

6.4.3 Practical Considerations

We here argue that our proposed scheme can lead to a practical protocol,
where nodes passively collect information during the dissemination process,
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and send once a small amount of information to the central node in charge
of the topology inference. In particular, we assume that the nodes follow the
information dissemination protocol and at some point the central node query
them to report the subspaces they gather at a specific 5 time t.

We now calculate the communication cost (total number of bits required to
be transmitted to a central node) of the proposed passive inference algorithm.
Each node has to transmit at most 2∆i(G) subspaces to the central node where
∆i(G) is the maximum in-degree of nodes in the network. There are ϑ nodes
in the network so 2ϑ∆i(G) subspace have to be transmitted. The total number
of subspaces of ΠS (which itself is an n-dimensional space) is

n∑

i=1

[
n

i

]

q

≈
n∑

i=1

qi(n−i) ≈ qn2/4, (6.21)

where
[
n
i

]
q
is the Gaussian number defined in Section 2.3. To approximate the

Gaussian number we use Lemma 2.1; note that the approximation holds for
large q.

So to encode one of the subspace of ΠS we need approximately n2

4 log q bits.
As a result, the total number of bits need to be transmitted to the central node
is at most

2n2∆i(G)ϑ

4
log q. (6.22)

Clearly, the complexity depends on the size of n, the number of packets
that the source transmits. Here we assume that n is large enough, so that the
network enters in steady state; on the other hand, other considerations such
as decoding complexity at network nodes, would require n to take moderate
values. Note that, for our algorithm to work, (i.e., to sample the network while
in the steady state) we only require that n = 2βcmaxD(G) (Corollary 6.1),
where β > 1 is some constant that determines how many time slots the network
is in the steady state. If n has such a size, the maximum number of bits that
need to be transmitted per node (communication cost per node) is

Rcom-cost/ND ≈ 2β2c2maxD(G)2∆i(G) log q bits. (6.23)

In the above equation β, cmax, and ∆i(G) are some constants. The only pa-
rameter that depends on the network size is D(G). However for the most of
practical content distribution networks the longest path of network is kept small
to ensure a good connectivity between nodes in the network (see for example
[81]).

To give a specific example for a possible communication cost, let us con-
sider a practical scenario where q = 28, cmax = 1, β2 = 5, ∆i(G) = 5, and

5. We assume the query is send before time t actually occurs; Also note that if the number
of source packets n is much larger than the min-cut to each node, and if we have an estimate
for ∆i(G) (the maximum in-degree of nodes in the network), a central node can with high
probability select at time t in steady state. A node can also send a feedback message to
inform the central node if it is not at steady state at time t.
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D(G) = 10. Then we have Rcom-cost/nd ≈ 4 kilobytes. In contrast, in a practi-
cal dissemination scenario (e.g., video streaming) we would disseminate a large
number of information packets each possibly as large as a few megabytes; thus
the overhead of the topological information would not be significant.

6.5 Locating Byzantine Attackers

In this section we explore a problem that is dual to topology inference:
given complete knowledge of the topology, we leverage subspace properties to
identify the location of a malicious Byzantine attacker.

In a network coded system, the adversarial nodes in the network disrupt the
normal operation of the information flow by inserting erroneous packets into
the network. This can be done by inserting spurious data packets into their
outgoing edges. One way in which these erroneous packets can be prevented
from disrupting information flow is by reducing the transmission rate to be-
low the min-cut of the network, and using the redundancy to protect against
errors; [70, 71, 72]. One such technique, using subspaces to code information
was proposed in [1]. In this approach, the source sends a basis of the subspace
corresponding to the message. In the absence of errors, the linear operations of
the intermediate nodes do not alter the sent subspace, and hence the receiver
decodes the message by collecting the basis of the transmitted subspace. A ma-
licious attacker inserts vectors that do not belong in the transmitted subspace.
Therefore, if the message codebook uses subspaces that are “far enough” apart
(according to an appropriately defined distance measure), then one can correct
these errors [1]. Note that in this technique, we do not need any knowledge of
the network topology for the error correction mechanism. All that is needed is
that the intermediate nodes do not alter the transmitted subspace (which can
be done if they do linear operations).

The approach of this section to locating adversaries uses the framework
developed in the previous sections, where it was shown that under randomized
NC, the subspaces gathered by the nodes of the network provide information
about the topology. Therefore, the basic premise in this section is to use the
structure of the erroneous subspace inserted by the adversary to reveal infor-
mation about its location, when we already know the network topology.

6.5.1 Problem Formulation

Consider a network represented as a directed acyclic graph G = (V,E). We
have a source, sending information to r receivers, and one (or more) Byzantine
adversaries, located at intermediate nodes of the network. We assume complete
knowledge of the network topology, and consider the source and the receivers
to be trustworthy (authenticated) nodes, that are guaranteed not to be adver-
saries.

Suppose source S sends n vectors, that span an n-dimensional subspace ΠS

of the space FL
q , where we assume q ≫ 1. In particular, in this section we will
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consider (without loss of generality) subspace coding, where ΠS belongs to a
codebook C, ΠS ∈ C designed to correct network errors and erasures [1].

In the absence of any adversaries in the network each receiver Ri, i =
1, . . . , r, can decode the exact space ΠS . Now assume that there is an adversary,
Eve, who attacks one of the nodes in the network by combining a δ-dimensional
subspace ΠE with its incoming space and sending the resulting vectors to its
children. Then the receiver Ri collects some linearly independent vectors that
span a subspace ΠRi

. We can write

ΠRi
= Hi(ΠS +ΠE), (6.24)

where Hi(Π) is a linear operator. This operator models the linear transforma-
tion that the network induces on the inserted source and adversary packets.

We assume that the receiver is able to at least detect that a Byzantine
attack is under way. Moreover, we assume that the receiver is able to decode
the subspace ΠS that the source has sent. This might be, either because the
receiver has correctly decoded the sent message (i.e., using code construction
from [1]), or, because after detecting the presence of an attack has requested
the source subspace through a secure channel from the source node.

We can restrict the Byzantine attack in several ways, depending on the edges
where the attack is launched, the number of corrupted vectors inserted, and
the vertices (network nodes) that the adversary has access to. In this section
we will distinguish between the cases where

I. there is a single Byzantine attacker located in a vertex of the network,
and

II. there are multiple independent attackers, located on different vertices,
that act without coordinating with each other.

Moreover, we assume that each attacker located on a single vertex is able to
corrupt any outgoing edges by inserting arbitrary erroneous information.

Now, we are interested in understanding under what conditions we can
uniquely identify the attacker’s location (or, up to what uncertainty we can
identify the attacker), under the above scenarios.

6.5.2 The Case of a Single Adversary

In this section we focus on the case where we want to locate a Byzantine
adversary, Eve, controlling a single vertex of the network graph.

In Section 6.5.2.1 we illustrate the limitation of using only the information
the receivers have observed along with the knowledge of the topology, to locate
the adversary. This motivates requiring additional information from the inter-
mediate nodes related to the subspaces observed by them. In Section 6.5.2.2,
we show that such additional information allows us to localize the adversary
either uniquely or within an ambiguity of at most two nodes.
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6.5.2.1 Identification using only Topological Information

In order to illustrate the ideas, we will examine the case where the corrupted
packets are inserted on a single edge of the network, say edge eA. The extension
to the cases where multiple edges get corrupted is easy.

Since each receiver R knows the subspaces {Π(i)
R } it has received from its

| In(R)| parents, it knows whether what it received is corrupted or not (a sub-
space of ΠS or not). Using this, we can infer some information regarding topo-
logical properties that the edge eA should satisfy. In particular we have the
following result, Lemma 6.5.

Lemma 6.5. Let Pe denote the set of paths 6 starting from the source and
ending at edge e. Then, if EC is the set of incoming edges to receivers that
bring corrupted packets, while ES the set of incoming edges to receivers that
only bring source information, the edge eA belongs in the set of edges EA, with

EA ,

{
⋂

e∈EC

Pe −
⋃

e∈ES

Pe

}
.

Proof. If R receives corrupted vectors from an incoming edge e then there exists
at least one path that connects eA to e. Then eA is part of at least one path
in Pe.

Conversely, if a receiver R does not receive corrupted packets from an in-
coming edge e, then eA does not form part of any path in Pe. That is, there
does not exist a path that connects eA to e.

The following example illustrates this approach.

Example 6.3. Consider the network in Figure 6.4, and assume that R1 re-
ceives corrupted packets from edge DR1 and uncorrupted packets from AR1,
while R2 receives only uncorrupted packets. Then EA = {DR1} and the at-

S

A

B

C

DR1 R2

Figure 6.4 – The source S distributes packets to receivers R1 and R2.

tacker is located on node D. �

6. In the following, we are going to equivalently think of Pe as the set of all edges that
take part in these paths.
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In Example 6.3, we were able to exactly identify the location of the adver-
sary, because the set EA contained a single edge, and node R1 is trustworthy.
It is easy to find network configurations where EA contains multiple edges, or
in fact all the network edges, and thus we can no longer identify the attacker.
The following example illustrates one such case.

Example 6.4. Consider the line network shown in Figure 6.5. Suppose the
attacker is node A. If the receiver R sees a corrupted packet, then using just
the topology, the attacker could be any of the other nodes in the line network.
This illustrates that just the topology and receiver information could lead to
large ambiguity in the location of the attacker.

Therefore, Example 6.4 motivates the ideas examined in Section 6.5.2.2
which obtain additional information and utilize the structural properties of the
subspaces observed.

6.5.2.2 Identification using Information from all Network Nodes

We will next discuss algorithms where a central authority, which we will call
controller, requests from all nodes in the network to report some additional in-
formation, related to the subspaces they have received from their parents. The
adversary could send inaccurate information to the controller, but the other
nodes report the information accurately. Our task is to design the question to
the nodes such that we can locate the adversary, despite its possible misdirec-
tion.

The controller may ask the nodes of the following types of information,
listed in decreasing order of complexity:

Information 1: Each node v sends all subspaces Π
(i)
v it has received from

its parents, where Πv =
∑

i∈P (v) Π
(i)
v .

Information 2: Each node v sends a randomly chosen vector from each

of the received subspaces Π
(i)
v (| In(v)| vectors in total).

Information 2 is motivated by the following observation made by Lemma 2.9:
let Π1 and Π2 be two subspaces of Fn

q , and assume that y be a randomly se-
lected vector from Π1. Then, for q ≫ 1, y ∈ Π2 if and only if Π1 ⊑ Π2. Thus,
a randomly selected vector from Πv allows to check whether Πv ⊑ ΠS or not.

In fact, we will show in this section that for a single adversary it is sufficient
to use 7 Information 2, and classify the edges of the network by simply testing
whether the information flowing through each edge is a subspace of ΠS or not
(i.e., is corrupted or not).

Theorem 6.5. Using Information 1, by splitting the network edges into cor-
rupted and uncorrupted sets, we can narrow the location of the adversary up to
a set of at most two nodes. With Information 2, the same result holds w.h.p.

7. Using Information 2, these statements are made with high probability, i.e., the proba-
bility goes to one as field size q → ∞.
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S A B C D R

Figure 6.5 – The source S sends information to receiver R over a line network.

Proof. The network is a directed acyclic graph, so we can impose a partial
order on the edges of the graph, such that e1 > e2 if e1 is an ancestor edge
of e2 (i.e., there exists a path from e1 to e2). Then having Information 1 or
Information 2, we can divide the edges of the network into two sets: the set
of edges EC through which are reported to flow corrupted subspaces, and the
remaining edges ES through which the source information flows so we have
E = ES ∪ EC and ES ∩ EC = ∅. Note that all the outgoing edges from the
source belong in ES .

Nodes in the network perform randomized NC so every node that receives
corrupted information on at least one of its incoming edges makes all of the
outgoing edges polluted w.h.p. Let tv be the number of corrupted outgoing
edges of a node v where we have 1 ≤ tv ≤ |Out(v)|. For each node v that is
not an adversary we have either tv = 0 or tv = |Out(v)|.

Now, to prove the theorem we consider the following possible cases.

1. If the adversary Eve corrupts tA outgoing edges where 1 < tA < |Out(A)|
we can identify the node she has attacked uniquely because its behavior
is different from all other nodes.

2. If she corrupts all of its outgoing edges, tA = |Out(A)|, then she can
fraud us by declaring that one of the node’s incoming edges is corrupted.
If A declares more than one of the incoming edges as corrupted we can
find its location uniquely.

3. She can also corrupt only one of its outgoing edges, tA = 1, and pretends
that its children is in fact the adversary by declaring all of its incoming
edges bring non-corrupted information. She cannot declare that any of its
incoming edges are polluted since then we may find its location uniquely.

In all of the above cases the adversary is on the boundary of two sets ES

and EC and the ambiguity about its location is at most withing a set of two
vertices where this set contains those two vertices that are connected by the
corrupted edge with highest order among all corrupted edges (recall that we
can compare all of the corrupted edges using the imposed partial order).

6.5.3 The Case of Multiple Adversaries

In the case of a single adversary, it was sufficient to divide the set of edges
into two sets, ES and EC , as described in the previous section. In the presence
of multiple adversaries, this may no longer be sufficient. An additional dimen-
sion is that realistically, we may not know the exact number of adversaries
present. In the following, we discuss a number of algorithms, that offer weaker
or stronger identifiability guarantees.
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6.5.3.1 Identification using only Topological Information

The approach in Section 6.5.2.1 can be directly extended in the case of
multiple adversaries, but again, offers no identifiability guarantees.

Example 6.5. Consider again the network in Figure 6.4, and assume that
R1 receives corrupted packets only from edge DR1 while R2 receives corrupted
packets only from edge DR2. Then EA = {AD,CD,DR1, DR2} and (depending
on our assumptions) we may have,

- a single adversary located on node D,
- two adversaries, located on nodes A and C,
- two adversaries, located on nodes A and D, or nodes C and D, or
- three adversaries, located on nodes A, C, and D.

�

6.5.3.2 Identification using Splitting

Similar to Section 6.5.2.2, using Information 1 or Information 2, we can
divide the set of edges into two sets ES and EC , depending on whether the
information flowing through each edge belongs in ΠS or not. Depending on
the network topology, we may be able to uniquely identify the location of the
attackers. However, this approach, although it guarantees to find at least one of
the attackers (within an uncertainty of at most two nodes), does not necessarily
find all the attackers, even if we know their exact number.

To show this let us state the following definition.

Definition 6.3. We say that node v is in the shadow of an adversary node
A, if there exists a path that connects every incoming edge of v to a corrupted
outgoing edge of A.

Then we have the following result.

Lemma 6.6. By splitting the network edges into two sets ES and EC we cannot
identify adversarial nodes that are in the shadow of an adversary A.

Proof. This is because if an attacker is in the shadow of another attacker, it
may corrupt only already corrupted vectors and thus not incur a detectable
effect. So we cannot distinguish between an attacker and a normal node that
are in the shadow of A.

The following example illustrates these points.

Example 6.6. For the example in Figure 6.4, assume that each attacker cor-
rupts all its outgoing edges, and consider the following two situations:

1. Assume that nodes A and C are attackers. If A reports truthfully while
C lies we get EC = {AD,AR1, DR1, DR2, BC,CR2, CD}, which allows
to identify the attackers.
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2. Assume that nodes B and D are attackers. Then we say that node D is
in the shadow of node B, as it corrupts only already packets corrupted by
B. Indeed, if EC = {SB,BA,BC,AD,AR1, DR1, DR2, BC,CR2, CD},
knowing that the source is trustworthy, we can infer that node B is an
attacker. However, any of the nodes A, C, and D can equally probably be
the second attacker. All these nodes are in the shadow of node B.

�

Theorem 6.6. Using Information 1 it is possible to narrow down the location
of those adversaries that have the highest order in the network using the splitting
method. The same result holds for Information 2 w.h.p.

Proof. As stated in the proof of Theorem 6.5 we can impose a partial order on
the edges of the network graph. Then, by using Information 1 or Information 2
we may split the network edges into two sets ES and EC .

Because every node in the network performs randomized network coding,
there are only two possibilities for each adversary to corrupt its outgoing edges
and report subspaces for its incoming edges such that it is not located uniquely.
These are as follows:

1. She corrupts some (or all) of its outgoing edges but reports its incoming
edges as uncorrupted.

2. She corrupts all of its outgoing edges and reports some (at least one) of
its incoming edges as corrupted.

Now, let us consider the set of all the corrupted edges that have highest
order with respect to other corrupted edges and cannot be compared against
each other. For each of the above cases there should be at least one adversary
connected to every edge in this set.

6.5.3.3 Identification using Subset Relationships

In this subsection we develop a new algorithm to find the adversaries which
is based on Information 1.

For each node u ∈ V , let P (u) = {u1, . . . , upu
} denote the set of parent

nodes of u. We are going to treat P (u) as a super-node, and use the notation
ΠP (u) =

∑pu

i=1 Πui
for the union of the subspaces of all nodes in P (u). Also

recall that Π
(u)
v denotes the subspace received by node v from node u.

Our last algorithm checks, for every node u ∈ V , whether

Π(u)
v

?
⊑ ΠP (u) ∀v ∈ V : euv ∈ E. (6.25)

Then we have the following result, Theorem 6.7.

Theorem 6.7. If the pairwise distance between adversaries is greater than two,
it is possible to find the exact number as well as the location of the attackers
(within an uncertainty of parent-children sets) using the subset method.
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Proof. First, let us focus on a single adversary case where A ∈ V is the node
attacked by the adversary. Then we will generalize the idea for an arbitrary
number of adversaries.

If (6.25) is satisfied for all children of u, we know that node u is not an ad-

versary. If the relationship is not satisfied, that is Π
(u)
v * ΠP (u) for at least one

child of u, we consider node u as a potential candidate for being an adversary.
For sure we know that

Π(A)
v * ΠP (A) ∀v ∈ V : eAv ∈ E,

but depending on the subspace that the adversary reports, the relation (6.25)
may not be also satisfied for other nodes. Based on what the adversary reports
there would be two possible cases.

If the adversary pretends that it is a trustworthy node (just declares the
received subspace from its parents) the above relation also fails for the children
of A who receive corrupted subspaces. On the other hand, if the adversary tells
the truth and declares its corrupted subspace, we have

Π
(u)
A * ΠP (u) ∀u ∈ V : uA ∈ E.

Thus the ambiguity set we have identified includes the adversary and its parents
and/or its children depending on the adversary’s report.

Repeating this procedure for every node in the network, we can identify
sets of potential adversaries. We know that depending on the adversaries action
there exists ambiguity in finding their exact location. In fact in the worst case,
the uncertainty is within a set of nodes including the adversary, its parents
and its children. So if the distance between adversaries is greater than two,
the “uncertainty” sets do not overlap. In this case we can easily distinguish
between different adversaries.

This procedure allows to identify adversaries (within the mentioned parent-
children ambiguity set), even if one is in the shadow of another, and even if
we do not know their exact number, provided they are “far enough” in the
network to be distinguishable.

6.6 Practical Implications for Topology Management

In Section 6.4, we demonstrated that using subspaces of all nodes, we can
infer the network topology under certain conditions. In this section, we will
show that even from what a single node observes, it is possible to get some
information regarding the bottlenecks and clustering in the network.

Leveraging this observation in the context of P2P networks, we propose
algorithms that use this information in a distributed peer-initiated manner to
avoid bottlenecks and clustering.
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6.6.1 Problem Statement and Motivation

In peer-to-peer networks that employ NC for content distribution (see for
example Avalanche [61, 62]) we want to create and maintain a well-connected
network topology, to allow the information to flow fast between the nodes; how-
ever, this is not straightforward. Peer-to-peer networks are very dynamically
changing networks, where hundreds of nodes may join and leave the network
within seconds. All nodes in this network are connected to a small number of
neighbors (e.g., four to eight). An arriving node is allocated neighbors among
the active participating nodes 8, which accept the solicited connection unless
they have already reached their maximum number of neighbors. As a result,
nodes that arrive at around the same time tend to get connected to each other,
since they are all simultaneously available and looking for neighbors. That is,
we have formation of clusters and bottlenecks in the network.

To avoid this problem, one method adopted in protocols is to ask all nodes
to periodically drop one neighbor and reconnect to a new one among an ac-
tive peers list. This randomized rewiring results in a fixed average number of
reconnections per node independently of how good or bad is the formed net-
work topology. Thus to achieve a good, on the average, performance in terms
of breaking clusters, it entails a much larger number of rewiring than required,
and unnecessary topology changes.

An alternative approach is to have peers initiate topology rewirings when
they detect they are in a cluster. Clearly a central node could keep some struc-
tural information, i.e., keep track of the current network topology, and use it to
make more educated choices of neighbor allocations. However, the information
this central node can collect only reflects the overlay network topology, and is
oblivious to bandwidth constraints from the underlying physical links. Acquir-
ing bandwidth information for the underlying physical links at the central node
requires costly estimation techniques over large and heterogeneous networks,
and steers towards a centralized network operation. We will argue that such
bottlenecks can be inferred almost passively in a peer-initiated manner, thus
alleviating these drawbacks.

Here, we will show that the coding vectors the peers receive from their
neighbors can be used to passively infer bottleneck information. This allows
individual nodes to initiate topology changes to correct problematic connec-
tions. In particular, peers by keeping track of the coding vectors they receive
can detect problems in both the overlay topology and the underlying physical
links. The following example illustrates these points.

Example 6.7. Consider the toy network depicted in Figure 6.6(a) where the
edges correspond to logical (overlay network) links. The source S has n pack-
ets to distribute to four peers. Nodes A, B and C are directly connected to
the source S, and also among themselves with logical links, while node D is

8. This is usually done by a central node which we call it (following Avalanche [61, 62])
“registrat”. This is the central authority that keeps the list of all nodes in the network and
gives every new node a set of neighbors.
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Figure 6.6 – The source S distributes packets to the peers A, B, C and D over
the overlay network (a), that uses the underlying physical network (b).

connected to nodes A, B and C. In this overlay network, there exist three edge-
disjoint paths between source and any other nodes.

Assume now (as shown in Figure 6.6(b)) that the logical links SA, SB, SC
share the bandwidth of the same underlying physical link, which forms a bottle-
neck between the source and the remaining nodes of the network. As a result,
assume the bandwidth on each of these links is only 1/3 of the bandwidth of the
remaining links. A central node (registrat), even if it keeps track of the complete
logical network structure by querying each node asking about its neighbors, is
oblivious to the existence of the bottleneck and the asymmetry between the link
bandwidths.

Node D however, can infer this information by observing the coding vectors
it receives from its neighbors A, B and C. Indeed, when node A receives a coded
packet from the source, it will forward a linear combination of the packets it
has already collected to nodes B and C and D. Now each of the nodes B and
C, once they receive the packet from node A, they also attempt to send a coded
packet to node D. But these packets will not bring new information to node D,
because they will belong in the linear span of coding vectors that node D has
already received. Similarly, when nodes B and C receive a new packet from the
source, node D will end up being offered three coded packets, one from each of
its neighbors, and only one of the three will bring to node D new information.
�

More formally, the coding vectors nodes A, B and C will collect will effec-
tively span the same subspace; thus the coded packets they will offer to node
D to download will belong in significantly overlapping subspaces and will thus
be redundant (we formalize these intuitive arguments in Section 6.6.2). Node
D can infer from this passively collected information that there is a bottleneck
between nodes A, B, C and the source, and can thus initiate a connection
change.
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6.6.2 Theoretical Framework

Here we use the same notations introduced in Section 6.2. For simplicity we
will assume that the network is synchronous 9. Nodes are allowed to transmit
linear combinations of their received packets only at clock ticks, at a rate equal
to the adjacent link bandwidth.

Now we use the framework of Section 2.4 to investigate the information that
we can obtain from the local information of a node’s subspace. From notations
defined in Section 6.2, we know that for an arbitrary node v we can write

Πv(t) =
∑

i∈P (v)

Π(i)
v (t). (6.26)

We are interested in understanding what information we can infer from these

received subspaces Π
(i)
v , i ∈ P (v), about bottlenecks in the network. For ex-

ample, the overlap of subspaces from the neighbors reveals some information
about bottlenecks. Therefore, we need to show that such overlaps occur due to
topological properties and not due to particular random linear combinations
chosen by the network code.

Let us assume that the subspaces Π
(i)
v a node v receives from its set of

parents P (v) have an intersection of dimension d. Then we have the following
observations.

Observation 6.1. The subspaces Π
(i)
v , i ∈ P (v), of the neighbors have an

intersection of size at least d (see Corollary 2.1).

Observation 6.2. The min-cut between the set of nodes P (v) and the source
is smaller than the min-cut between the node v and set P (v) (see Theorem 6.1).

In the following, we will discuss algorithms that use such observations for
topology management.

6.6.3 Algorithms

Our peer-initiated algorithms for topology management consist of three
tasks:

1. Each peer decides whether it is satisfied with its connection or not, using
a decision criterion.

2. An unsatisfied peer sends a rewiring request, that can contain different
levels of information, either directly to the registrat, or to its neighbors
(these are the only nodes the peer can communicate with).

3. Finally, the registrat, having received rewiring requests, allocates neigh-
bors to nodes to be reconnected.

9. This is not essential for the algorithms but simplifies the theoretical analysis.
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The decision criterion can capitalize on the fact that overlapping received
subspaces indicate an opportunity for improvement. For example, in the first
algorithm we propose (Algorithm 1), a node can decide it is not satisfied with a
particular neighbor, if it receives k > 0, non-innovative coding vectors from it,
where k is a parameter to be decided. Then it has each unsatisfied node directly
contact the registrat and specify the neighbor it would like to change. The
registrat randomly selects a new neighbor. This algorithm, as we demonstrate
through simulation results, may lead to more rewirings than necessary: indeed,
all nodes inside a cluster may attempt to change their neighbors, while it would
have been sufficient for a fraction of them to do so.

Our second algorithm (Algorithm 2) uses a different decision criterion: for
every two neighbors u and v, each peer w computes the rate at which the

received joint space Π
(u)
w + Π

(v)
w and intersection space Π

(u)
w ∩ Π

(v)
w increases.

If the ratio between these two rates becomes greater than a threshold T , the
node decides it would like to change one of the two neighbors. However, in-
stead of directly contacting the registrat, it uses a decentralized voting method
that attempts to further reduce the number of reconnections. Then the regis-
trat randomly selects and allocates one new neighbor for the nodes have sent
rewiring request.

Our last proposed algorithm (Algorithm 3), while still peer-initiated and
decentralized, relies more than the two previous ones in the computational
capabilities of the registrat. The basic observation is that, nodes in the same
cluster will not only receive overlapping subspaces from their parents, but more-
over, they will end up collecting subspaces with very small distance (this follows
from Theorem 6.1 and Corollary 2.1 and is also illustrated through simulation
results in Section 6.6.4; see Figure 6.8). Each unsatisfied peer v sends a rewiring
request to the registrat, indicating to the registrat the subspace Πv it has col-
lected. A peer can decide it is not satisfied using for example the same criterion
as in Algorithm 2.

The registrat waits for a short time period, to collect requests from a number
of dissatisfied nodes. These are the nodes of the network that have detected
they are inside clusters. It then calculates the distance between the identified
subspaces to decide which peers belong in the same cluster. While exact such
calculations can be computationally demanding, in practice, the registrat can
use one of the many hashing algorithms to efficiently do so. Finally the registrat
breaks the clusters by rewiring a small number of nodes in each cluster. The
allocated new neighbors are either nodes that belong in different clusters, or,
nodes that have not send a rewiring request at all.

We will compare our proposed algorithms against the Random Rewiring
currently employed by many peer-to-peer protocols (e.g., see [61, 62, 81]). In
this algorithm, each time a peer receives a packet, with probability p contacts
the registrat and asks to change a neighbor. The registrat randomly selects
which neighbor to change, and randomly allocates a new neighbor from the
active peer nodes.
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Figure 6.7 – A sample of topology with three clusters: cluster 1 contains nodes
1–10, cluster 2 nodes 11–20 and cluster 3 nodes 21–30.

6.6.4 Simulation Results

For our simulation results we will start from randomly generated topologies
similar to Figure 6.7, that consists of 30 nodes connected into three distinct
clusters. The source is node 1, and belongs in the first cluster. The bottleneck
links are indicated with arrows (and thus indicate the underlying physical link
structure). Our first set of simulation results depicted in Figure 6.8 show that
the subspaces within each cluster are very similar, while the subspaces across
clusters are significantly different, where we use the distance measure DS(·, ·)
defined in (2.5). These results indicate that knowledge of these subspaces will
allow the registrat to accurately detect and break clusters (Algorithm 3).

Our second set of simulation results considers again topologies with three
clusters: cluster 1 has 15 nodes and contains the source, cluster 2 has also 15
nodes, while the number of nodes in cluster 3 increases from 15 to 250. During
the simulations we assume that the registrat keeps the nodes’ degree between
2 and 5, with an average degree of 3.5. All edges correspond to unit capacity
links.

We compare the performance of the three proposed algorithms in Sec-
tion 6.6.3 with random rewiring. We implemented these algorithms as follows.
For random rewiring, every time a node receives a packet it changes one of
its neighbors with probability p = 8

500 . For Algorithm 1, we use a parameter
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Figure 6.8 – Simulation results for the topology in Figure 6.7, with bottleneck
links capacity value equal to 0.1 (top) and 1 (bottom).

of k = 10, and check whether the non-innovative packets received exceed this
value every four received packets. For Algorithm 2, every node checks the ratio
of the dimensions of the intersection and the joint space of subspaces received
from each pair of neighbors using the threshold value T = 1. Finally for Al-
gorithm 3, we assume that nodes use the same criterion as in Algorithm 2 to
decide whether they form part of a cluster, again with T = 1. Dissatisfied nodes
send their observed subspaces to the registrat. The registrat assigns nodes u
and v in the same cluster if dS(Πu,Πv) ≤ 7.

Table 6.1 compares all algorithms with respect to the average collection
time, defined as the difference between the time a peer receives the first packet
and the time it can decode all packets, and averaged over all peers. All algo-
rithms perform similarly, indicating that all algorithms result in breaking the
clusters. It is important to note that the average collection time is in terms of
number of exchanges needed and does not account for the delays incurred due
to rewiring. We compare the number of such rewirings needed next.

Figure 6.9 plots the average number of rewirings each algorithm employs.
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Random rewiring incurs a number of rewirings proportional to the number
of P2P nodes, and independently from the underlying network topology. Our
proposed algorithms on the other hand, adapt to the existence and size of
clusters. Algorithm 3 leads to the smallest number of rewirings. Algorithm 2
leads to a larger number of rewirings, partly due to that the new neighbors are
chosen randomly and not in a manner that necessarily breaks the clusters. The
behavior of algorithm 1 is interesting. This algorithm rewires any node that has
received more than k non-innovative packets. Consider cluster 3, whose size we
increase for the simulations. If k is small with respect to the cluster size, then
a large number of nodes will collect close to k non-innovative packets; thus a
large number of nodes will ask for rewirings. Moreover, even after rewirings
that break the cluster occur, some nodes will still collect linearly dependent
information and ask for additional rewirings. As cluster 3 increases in size, the
information disseminates more slowly within the cluster. Nodes in the border,
close to the bottleneck links, will now be the ones to first ask for rewirings,
long before other nodes in the network collect a large number of non-innovative
packets. Thus once the clusters are broken, no new rewirings will be requested.
This desirable behavior of Algorithm 1 manifests itself for large clusters; for
small clusters, such as cluster 2, the second algorithm for example achieves a
better performance using less reconnections.
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Figure 6.9 – Average number of rewirings, for a topology with three clusters:
cluster 1 has 15 nodes, cluster 2 has 15 nodes, while the number of nodes in
cluster 3 increases from 20 to 250 as described in Table 6.1.

Table 6.1 – Average Collection Time

Topology Random Algo 1 Algo 2 Algo 3
15–15–20 20.98 22.14 20.57 20.39
15–15–40 18.72 21.13 19.36 19.47
15–15–70 18.88 21.54 18.97 19.54
15–15–100 18.6 21.48 18.91 21.42
15–15–150 19.56 20.85 19.96 20.18
15–15–250 18.79 19.8 19.18 18.99
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6.7 Concluding Remarks

In this chapter we explored the properties of subspaces each node collects in
networks that employ randomized NC and found that there exists an intricate
relationship between the structure of the network and these properties. This
observation led us to utilize these relationships in several different applications.
As the first application, we studied the conditions under which we can passively
infer the network topology during content distribution. We showed that these
conditions are not very restrictive and hold for a general class of information
dissemination protocols. As our second application, which in some sense is
the dual of the previous problem, we focused on locating Byzantine attackers
in the network. We studied and formulated this problem and found that for
the single adversary we can identify the adversary within an uncertainty of
two nodes. For the case of multiple adversaries, we discussed a number of
algorithms and conditions under which we can guarantee identifiability. For
our last application, we investigated the relation between the bottlenecks in
a logical network and the subspaces received at a specific network node. We
leveraged our observations to propose decentralized peer-initiated algorithms
for rewiring in P2P systems to avoid clustering in a cost-efficient manner, and
evaluated our algorithms through simulations results.

The applications studied in this chapter demonstrate advantages of using
randomized NC for network management and control, that are additional to
throughput benefits. These are just a few examples and we believe that there
exist a lot more applications where we can use the subspace properties de-
veloped in this chapter. We hope that these properties will become part of a
toolbox that can be used to develop applications for systems that employ NC
techniques.
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6.A Omitted Proofs

Proof of Lemma 6.1. Here we assume that n is very large. Then in Corol-
lary 6.1 we will derive a sufficient condition on the largeness of n.

Let v be the node that has the longest path to the source S. Because of
Definition 6.1 we can write Ts ≤ τv. Then we may upper bound τv as follows

τv ≤ 2 + max
u∈P (v)

τu, (6.27)

where P (v) is the set of parents of v. Now we can repeat the above argument
until we reach the source S. So finally we have

τv ≤ 2D(G), (6.28)

which leads to the lemma’s assertion.

Proof of Lemma 6.2. Let us write

dim
(
πu(1) ∩ Πv(j)

)

(a)
= dim

(
πu(1) ∩ (Πv(j) ∩ Π(0))

)

(b)
= dim

(
πu(1) ∩ πv(1)

)

(c)
= min

[
d0, (ku(1) + kv(1)− d0)+, ku(1), kv(1)

]

=
(
ku(1) + kv(1)− d0

)+

< ku(1), (6.29)

where (a) follows because πu(1) ⊑ Π(0) and (c) is a result of Corollary 2.
So ∀j ∈ {1, . . . , t} we have πu(1) * Πv(j) which results in Πu(i) * Πv(j),
∀i, j ∈ {1, . . . , t}. By symmetry, we have the second assertion of the lemma,
namely, Πv(j) * Πu(i), ∀i, j ∈ {1, . . . , t}.

Now, it only remains to check (b). We will prove this by induction. Obvi-
ously, Π(0)∩Πv(1) = πv(1). Suppose that we have Π(0)∩Πv(k) = πv(1) where
k < t then we show that it also holds for k + 1.

We know that πv(1) ⊑ Π(0) ∩Πv(k + 1). To show that Π(0) ∩Πv(k + 1) ⊑
πv(1) we proceed as follows. Let w ∈ Π(0) ∩ Πv(k + 1) then w ∈ Π(0) and

w ∈ Πv(k + 1) =
∑k+1

i=1 πv(i). We may decompose w as w =
∑k+1

i=1 wi where

wi ∈ πv(i). Then note that wk+1 = w −∑k
i=1 wi ∈ Π(k − 1) and by using

Lemma 2.10 it can be shown that Π(k−1)∩πv(k+1) = ∅ w.h.p. So we conclude
that wk+1 = 0 which means w ∈ Πv(k). This shows that w ∈ Π(0) ∩ Πv(k)
where by induction assumption we have w ∈ πv(1) and we are done.

Proof of Corollary 6.2. Because Πu(0) * Πv(j − 1) then by Lemma 2.9 we
have πa(1) * Πv(j − 1) w.h.p. So as a result we have Πa(i) * Πv(j − 1) ∀i, j ∈
{1, . . . , t}. Now, because Πb(j) ⊑ Πv(j − 1) we conclude that Πa(i) * Πb(j)
∀i, j ∈ {1, . . . , t} w.h.p. By symmetry, we also deduce the other part of the
corollary.
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6.B Algebraic Model for Synchronous Networks

In this appendix we employ an algebraic approach to analyze the dissemi-
nation protocol given in Algorithm 6.1. This approach is similar to [7] and [4],
but differs in that we introduce memory into the coding process.

We introduce memory as follows. Suppose we are interested in finding the
transfer function between the source and an arbitrary node v. Let X be a n×L
matrix with rows the n packets (vectors) that the source wants to transmit to
the receivers. We assume that dim(〈X〉) = n. Let Y [t] ∈ Fξ×L

q be a matrix
with rows the packets that pass through the ξ edges of the network at time t.
Let Z(v)[t] be the set of packets that node v receives at time t. Similar to [7],
we will write state-space equations that involve these vectors; however, we will
ensure that, at each time t, coding at each node occurs across all the packets
that the node has received before time t.

In every time-slot t, the source injects |Out(S)| packets into the network
that are random linear combinations of the original source packets X. These

linear combinations can be captured as M [t]X , where M [t] ∈ F|Out(S)|×n
q is

a random matrix. Intermediate network nodes will transmit packets on their
outgoing edges depending on the network connectivity, and the state of the
dissemination protocol.

The network connectivity can be captured by the ξ × ξ adjacency matrix
F of the labeled line graph of the graph G, defined as follows

Fij ,

{
1 head(ei) = tail(ej),
0 otherwise.

(6.30)

To model random coding over a finite field Fq, we consider a sequence of ran-

dom matrices F
(t)
1 , . . . ,F

(t)
t−1 which conform to F . That is, the entries of these

matrices have for i 6= j (F
(t)
k )ij = 0 wherever Fij = 0 and have random num-

bers from Fq in all other places. The set of matrices F
(t)
1 , . . . ,F

(t)
t−1 represent

the network code at every time-slot t.

The dissemination protocol dictates when a node can start transmitting
packets, according to its waiting time (equivalently, when the outgoing edges
of the node will have packets send through them). To capture this, we will use
the step function u[t],

u[t] ,

{
1 t ≥ 0,
0 otherwise,

(6.31)

and define the ξ × ξ diagonal matrix U [t] as,

∀i ∈ E : U ii[t] , u
[
t− τtail(i) − 1

]
, (6.32)

where τv is the waiting time for node v. In this section we assume that the
waiting times may have arbitrary values and we do not restrict them according
to Definition 6.1.
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Using the above definitions, the set of packets (vectors) that each node v
receives in every time instant t > 0 can be written as follows





Y [t] = U [t]
(
AM [t]X +

∑t−1
i=1 F

(t)
i Y [t− i]

)
,

Z(v)[t] = B(v)Y [t],

(6.33)

where Y [0] = 0. In the above, A ∈ Fξ×|Out(S)|
q is a matrix which represents

the connection of node S to the rest of the network. In the same way matrix

B(v) ∈ F| In(v)|×ξ
q defines the connection of node v to the set of edges in the

network.
It is worth noting that although (6.33) is written for the packets transmitted

on each edge, we can write the same set of equations for the coding vectors.
Suppose we are interested in finding the output of such a system at some

time instant T . We can rewrite the above equations by defining new matrices
as follows. We can collect the source random operations as

MT ,




M [1]
...

M [T ]


 ∈ FT |Out(S)|×n

q . (6.34)

For the states of system we define

Y T ,




Y [1]
...

Y [T ]


 ∈ FξT×L

q . (6.35)

We also define a new set of matrices which represent the input-output relation.
Using matrix A we define the following matrix

AT , IT ⊗A =




A

. . .

A


 ∈ FξT×T |Out(S)|

q . (6.36)

For the connection of node v we define

B
(v)
T ,

[
0| In(v)|×(T−1)ξ B(v)

]
∈ F| In(v)|×ξT

q . (6.37)

We define matrix F T which represent how the states are related to each other

F T ,




0 0 0 0 · · ·
F

(2)
1 0 0 0 · · ·

F
(3)
2 F

(3)
1 0 0 · · ·

F
(4)
3 F

(4)
2 F

(4)
1 0 · · ·

...
...

...
...

. . .



∈ FξT×ξT

q . (6.38)
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Finally, we use matrix UT that captures the time when transmissions start for
each edge

UT ,




U [1]
. . .

U [T ]


 ∈ FξT×ξT

q . (6.39)

Using the above definitions, we can rewrite (6.33) as follows





Y T = UT (ATMTX + F TY T ) ,

Z(v)[T ] = B
(v)
T Y T .

(6.40)

This equation can be solved to find the input-output transfer matrix at time
T which results in

Z(v)[T ] =
[
B

(v)
T (I −UTF T )

−1UTATMT

]

︸ ︷︷ ︸
H(v)[T ]

X, (6.41)

where H(v)[T ] ∈ F| In(v)|×n
q . From the definition of matrix F T , we know that

it is a “strictly lower triangular matrix” which means F T is nilpotent and
we have F T

T = 0. The same applies for the matrix UTF T , namely we have
(UTF T )

T = 0. So the matrix (I −UTF T )
−1 has an inverse which is equal to

(I −UTF T )
−1 = I + · · ·+ (UTF T )

T−1. (6.42)

Finally, note that if the nodes do not wait before starting the transmission
(τv = 0 : ∀v ∈ V ), then we will have UT = IξT×ξT .

6.C Proof of Theorem 6.1

For simplicity, in the following proof, we assume that each edge of the
network has capacity 1. Edges with capacity more than 1 can be modeled by
replacing them with multiple edges of unit capacity.

From (6.41) the transfer matrix from S to v at time T is equal to H(v)[T ].
Knowing that the min-cut of node v is cv, we choose a set of cv incoming edges
to v such that there exist cv edge disjoint paths from S to v and find the
input-output transfer matrix just for this set of edges. Then we can write

Ĥ
(v)

[T ] = B̂
(v)

T (I −UTF T )
−1UTATMT

= B̂
(v)

T

(
I + · · ·+ (UTF T )

T−1
)
UTATMT , (6.43)

where Ĥ
(v)

[T ] ∈ Fcv×n
q and B̂

(v)

T ∈ Fcv×ξT
q . Let f

(t,k)
ij denote for the entries

of F
(t)
k and m

(t)
ij denote for the entries of M [t]. Every node in the network

performs random linear NC so m
(t)
ij and f

(t,k)
ij (those that are not zero) are

chosen uniformly at random from Fq.
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From (6.43) we know that each entry of Ĥ
(v)

[T ] is a polynomial of degree at

most T in variables m
(t)
ij and f

(t,k)
ij . For T > t0(v) where t0(v) , maxi∈P (v) τi,

we know that there exists a trivial solution for variables m
(t)
ij and f

(t,k)
ij (which

simply routes cv packets from S to v through the cv edge disjoint paths) that
results in

Ĥ
(v)

[T ] =
[
Icv 0cv×(n−cv)

]
. (6.44)

Note that by changing the routing solution (in fact by changing the variables

m
(t)
ij properly) we could change the place of identity matrix in (6.44) arbitrarily.

We conclude that the determinant of every cv×cv sub-matrix of Ĥ
(v)

[T ] (which

is a polynomial of degree at most cvT in variables m
(t)
ij and f

(t,k)
ij ) is not

identical to zero. So by using the Schwartz-Zippel lemma [82] we can upper

bound the probability that Ĥ
(v)

[T ] is not full rank if the variables m
(t)
ij and

f
(t,k)
ij are chosen uniformly at random as follows

P
[
rank Ĥ

(v)
[T ] < cv

]
<
cvT

q
. (6.45)

We can apply the same argument for k < n
cv

consecutive time-slots to show
that

P
[
rank Ĥ

(v)
[T : T + k − 1] < kcv

]
<
kcv(T + k)

q
, (6.46)

where

Ĥ
(v)

[T : T + k − 1] ,




Ĥ
(v)

[T ]
...

Ĥ
(v)

[T + k − 1]


 . (6.47)

Now let us define the event Ak(v) as follows

Ak(v) : rank Ĥ
(v)

[T : T + k − 1] = kcv. (6.48)

Then we can write

P [∩v∈VAk(v)] = 1− P
[
∪v∈VA∁

k(v)
]

≥ 1−
∑

v∈V

P
[
A∁

k(v)
]

≥ 1− k(T + k)

q

∑

v∈V

cv, (6.49)

where T > t0 and t0 , maxv∈V t0(v).
This means that assuming q is large enough we are sure that with high

probability each node v receives cv innovative packets per time slot for t > t0.
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Overview

Secure communication is an important requirement for any communica-
tion system. In this chapter, we consider the problem of secret sharing among
multiple nodes in a network (wireless or wired) in the presence of a passive
eavesdropper. We consider a situation where there is a broadcast channel from
one of the trusted nodes to the rest of them including the eavesdropper. More-
over, we assume that the legitimate nodes can discuss over a rate-unlimited
public channel. Although in the literature there have been proposed upper and
lower bounds for the secret key sharing capacity for this scenario (e.g., see
[83, 84, 85, 86]), the exact characterization for the secrecy capacity is still an
open problem.

In this part, we focus on some specific cases of the aforementioned problem
and our goal is to propose secret key sharing schemes that perform well and are
efficient. To be more specific, we start Chapter 7 by studying the erasure broad-
cast channel. The proposed achievability scheme for this problem achieves the
secrecy capacity and unlike many information theoretical problems it is prac-
tically efficient (i.e., it is a polynomial time algorithm). Then we extend the
two-state erasure channel model to a multi-state deterministic channel model.
For this problem the secrecy capacity is characterized as well and it is achieved
by an efficient scheme. The multi-state deterministic channel is a model to cap-
ture the different SNR level in a wireless network. By considering this problem,
we obtain some insights about the state-dependent Gaussian model which is
the last scenario we consider in Chapter 7. By applying a nested message set,
degraded channel wiretap code, and by using the insights we gain by study-
ing the deterministic broadcast channel, we may convert the state-dependent
Gaussian broadcast channel to multiple parallel and independent erasure chan-
nels. The final achievability scheme for this problem is not optimal in general.
However, for the high dynamic range case when SNR is high, we show that it
achieves the optimal performance.

In Chapter 8, we consider a similar problem as introduced above but instead
over a non-coherent NC multicast channel which is modeled by a multiplicative
matrix channel with random uniform distribution over channel transfer matri-
ces, as introduced in Chapter 3 (see Section 3.1.2). By using the insight we gain
from the study of the erasure broadcast channel in Chapter 7, we propose an
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efficient achievability scheme for this problem. The achievable rate is given by
the solution of a convex optimization problem. However, because of the funda-
mental differences that subsets and subspaces have, the final achievable secret
key rate is not optimum in general.



“In all secrets there is a kind of

guilt, however beautiful or joyful

they may be, or for what good

end they may be set to serve.

Secrecy means evasion, and

evasion means a problem to the

moral mind.”

- Gilbert Parker

Group Secret Key Agreement

over Wireless Broadcast

Channels 7
In this chapter we consider the problem of generating a secret key K among

m+ 1 ≥ 2 honest nodes that communicate over a wireless channel in the pres-
ence of a passive eavesdropper, Eve. We restrict our attention to the case where
communication occurs either through a broadcast channel, where the received
symbols are independent among all receivers of the broadcast transmissions
(including Eve) given that the transmitted symbols is known, or, through a
no-cost public channel.

Here, we consider three types of broadcast channels. First, we model a
wireless broadcast channel by a packets erasure channel. For this model we
characterize the secret key generation capacity and propose a computationally
efficient achievability scheme that employs techniques from NC. Surprisingly,
we show that the rates at which we can generate a secret key among the m+1
nodes, is not affected by the number of nodes; that is, whether we try to
establish a secret key between two nodes, or an arbitrary number, we can do
this at the same rate. This result is reminiscent of the main theorem in NC (see
Theorem 2.1), where a source can multicast information to a set of receivers
at the same rate, independently of the number of receivers [6].

However, in wireless communication systems when a packet is declared to
be erased, it does not mean that the whole packet symbols are corrupted.
Depending on the SNR 1 level, we might have more or less number of corrupted
symbols. One way to model this behavior is to consider a multi-state channel
in contrast to the two-state erasure channel.

Thus, we continue the chapter by initiating the study of group secret key
agreement over a state-dependent Gaussian broadcast channel. This can be mo-
tivated by fading wireless channels, where the channel states vary over time.
The use of state-dependent channels for secrecy has been of interest recently

1. Signal to noise ratio.
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(see for example [87] and references therein). To gain insight into our problem,
we first investigate a deterministic approximation of the wireless channel as
defined in [88, 89]. For the deterministic broadcast channel we will show that
using a superposition based secrecy scheme [90], we can develop a group key
agreement protocol that can be shown to be information-theoretically optimal.
This can be done by converting the deterministic channel to multiple indepen-
dent erasure channels. In particular, we show that we can can get the same key
agreement rate for the entire group as we would get for a single pair of nodes.
Therefore this result demonstrates that with unlimited public discussion, we
get secret key-agreement rates for linear deterministic channels, that is invari-
ant to network size. Similar to the case of erasure broadcast channel, a key
idea to get this is a connection to NC, which allows efficient reconciliation of
the group secret.

We use the deterministic achievability scheme to get an insight about the
Gaussian wireless broadcast channel with state. To this end, we use a nested
message set, degraded channel wiretap code based on the broadcast approach of
[90] to develop a key-agreement protocol for the noisy broadcast problem. This
enables a scheme that converts the wireless channel with state to behave similar
to the deterministic case. Though this is not optimal, we can demonstrate that
when there is a large dynamic range between the channel states, this scheme
is optimal in the (generalized) degrees of freedom sense.

It is important to mention that Section 7.6 and Section 7.7 have been done
as a joint work with Shaunak Mishra 2.

7.1 Related Work

Secret key generation over wireless channels is a problem that has attracted
significant interest. In a seminal paper on “wiretap” channels, Wyner [91] pio-
neered the notion that one can establish information-theoretic secrecy between
Alice and Bob by utilizing the noisy broadcast nature of wireless transmissions.
However, his scheme works only if we have perfect knowledge of Eve’s channel
and moreover, only if Eve has a worse channel than Bob. In a subsequent sem-
inal work, Maurer [84] showed the value of feedback from Bob to Alice, even
if Eve hears all the feedback transmissions (i.e., the feedback channel is pub-
lic). He showed that even if the channel from Alice to Eve is better than that
to Bob, feedback allows Alice and Bob to create a key which is information-
theoretically secure from Eve. The problem of key agreement between a set of
terminals with access to noisy broadcast channel and public discussion chan-
nel (visible to the eavesdropper) was studied in [85], where some achievable
secrecy rates were established, assuming Eve does not have access to the noisy
broadcast transmissions. The case when the eavesdropper also had access to
the broadcast channel was the main focus of recent work in [92, 86] which
developed (non-computable) lower and upper bounds for secrecy rates.

2. Shaunak Mishra is a Ph.D. student at University of California, Los Angeles (UCLA),
working under the supervision of prof. Suhas Diggavi.
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To the best of our knowledge, ours is the first work to consider multi-
terminal secret key agreement over erasure networks and wireless broadcast
channels with state, when Eve also has access to the noisy broadcast transmis-
sions. Moreover, unlike the information-theoretic works in [91, 84, 83, 85, 86]
that assume infinite complexity operations, our schemes for the erasure and
deterministic broadcast channels are computationally efficient.

7.2 Problem Statement

We consider a set of m + 1 ≥ 2 honest nodes, T0, . . . ,Tm, that 3 aim to
share a secret key K among themselves while keeping it concealed from a pas-
sive adversary, Eve. Eve does not perform any transmissions, but is trying to
eavesdrop on (overhear) the communications between the honest nodes. For
convenience, sometimes we will refer to legitimate terminals T0,T1,T2, . . . , as
“Alice,” “Bob,” “Calvin,” and so on 4.

We assume that Alice has access to a broadcast channel such that the rest
of the terminals (including Eve) receive independent noisy version of what she
broadcasts, i.e., for the channel transition probability we can write

PX1···XmXE|XA
(x1, . . . , xm, xE|xA) = PXE|XA

(xE|xA)
m∏

i=1

PXi|XA
(xi|xA), (7.1)

where the input and output symbols of the channel are from some arbitrary
sets. We also assume that all of the honest terminals can discuss over a cost-free
public channel where everybody (including Eve) can hear the discussion.

In the following, we define a protocol that abstracts the interactive commu-
nication between terminals aiming to share a common secret key K (see also
[84, 83, 85, 86]).

Definition 7.1. The secret key generating protocol is defined as follows:

1. For t = 0, all of the honest terminals generate independent random vari-
ables W0, . . . ,Wm.

2. (i) For time 1 ≤ t ≤ n, Alice transmits X0[t] over the broadcast channel
where

X0[t] = X0,t

(
W0,D

t−1
)
. (7.2)

We will define the random vectors D[t] in the following. Then the other
terminals receive X1[t], . . . , Xm[t] and Eve receives XE[t].
(ii) Following each of the broadcast transmissions, there is the possibility
for the terminals to discuss over a cost-free public channel. This discus-
sion continues for r[t] rounds and is represented by the random vectors

3. We use T to denote for “terminal”.
4. During this chapter, we use Ti and i interchangeably when they are used as subscript.

So, for example, instead of XTi
we sometimes write Xi. At some points, we also use XA, XB,

and etc. to denote for X0 and X1, and so on.
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D[t] =
(
D0[t], . . . ,Dr[t][t]

)
, where

Di[t] = Di,t

(
Wj , X

t
j ,D

t−1,D0:i−1[t]
)

(7.3)

is the public message revealed by the jth terminal with j = i mod (m+1)
(in other words, the indexing of the discussion is done in a round robin
order).

3. Finally, the ith terminal creates a key Ki where

Ki = Ki(Wi, X
n
i ,D

n). (7.4)

Definition 7.2. A number Rs is called an achievable key generation rate if
for every ǫ > 0 and sufficiently large n there exists a key generating protocol as
defined in Definition 7.1 such that we have

P [Ki 6= Kj ] < ǫ, ∀i, j : i 6= j, (7.5)

I(K0;X
n
E ,D

n) < ǫ, (7.6)

and
1

n
H(K0) > Rs − ǫ. (7.7)

The supremum of the achievable key rate as n → ∞ and ǫ → 0 is called the
key generation capacity Cs.

In the following, we will be going to introduce the different broadcast chan-
nels we will use in this chapter to model a wireless network.

7.2.1 Erasure Broadcast Channels

Here, we introduce the erasure broadcast channel model. We assume the
input and output symbols to the erasure channel are packets of length L of
elements from a finite filed Fq. When Alice transmits a packet, node Ti correctly
overhears it with probability 1 − δi, where δi is the “erasure probability” of
the channel. Similarly, Eve correctly receives the packets with probability 1 −
δE. The erasure events happen independently over time and across different
channels. For simplicity (and without loss of generality) in this chapter we will
focus on the symmetric case where we have δi = δ.

7.2.2 Deterministic Broadcast Channels

In this section, we introduce the deterministic model for the Gaussian chan-
nels which will be introduced in Section 7.2.3.

Let the transmitted vector sent by Alice be denoted by XA ∈ FL
q . The

received vectors for every terminal and Eve depend on their channel states
for the particular time instant. We define a random variable STi

∈ [0 : s]
corresponding to the state of the channel for the ith terminal and similarly
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define the random variable SE ∈ [0 : s] for Eve. We assume that the channel
states are independent and for each receiver r ∈ {T1, . . . ,Tm,E} we have 5

P [Sr = k] = δk, k ∈ [0 : s]. (7.8)

Then we model the received vector at the receiver r by a state-dependent
deterministic channel as follows

X̃r[t] = F Sr[t]XA[t], ∀r ∈ {T1, . . . ,Tm,E}, (7.9)

where F i ∈ FL×L
q for i ∈ [0 : s]. Moreover, we assume that the state of

a particular channel is available at the corresponding receiver. We define a
composite received vector for the receiver r as follows

Xr[t] = (X̃r[t], Sr[t]). (7.10)

In order to capture and model the different SNR level for the Gaussian
channel we use the shift matrix model developed in [88, 89]. This implies that
the matrices F i have the following nested structure:

0 = kerF s ⊂ kerF s−1 ⊂ · · · ⊂ kerF 0 = FL
q , (7.11)

and
rank(F i − F i−1) = rank(F i)− rank(F i−1). (7.12)

For convenience we assume that F s = IL. The two extreme states “0” and
“s” correspond to complete erasure and complete receiving of the transmitted
vector XA. This deterministic model is indeed an extension to the packet era-
sure broadcast channel, introduced in Section 7.2.1, which only has two channel
states.

7.2.3 State-Dependent Gaussian Broadcast Channels

Finally, in this section, we introduce the state-dependent additive white
Gaussian broadcast channel model where for each receiver the channel state
remains the same for a block of symbols of length L and changes independently
from one block to another block. We also assume that L is large enough that
enables us to apply information theoretical arguments within each block. The
transmitted vector sent by Alice is denoted by XA ∈ RL. The received vectors
for every terminal and Eve depend on their channel states for the particular
time instant. We define a random variable STi

∈ [0 : s] corresponding to the
state of the channel for the ith terminal and similarly define the random vari-
able SE ∈ [0 : s] for Eve. For the channel state of a receiver r ∈ {T1, . . . ,Tm,E}
we assume that 6

P [Sr = k] = δk, k ∈ [0 : s]. (7.13)

5. For simplicity of demonstration and without loss of generality, here we only consider a
symmetric case where the probability distribution over the channel states are the same for
all of the receivers.

6. Again, for simplicity, we consider a symmetric problem where the probability distribu-
tion over the states are the same for all of the receivers (including Eve). Moreover, we focus
on a finite number of states. Both these restrictions can be relaxed.
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Then we model the received vector at the receiver r by a state-dependent white
Gaussian channel as follows

X̃r[t] = hSr[t]XA[t] +Zr[t], ∀r ∈ {T1, . . . ,Tm,E} (7.14)

where X̃r[t] ∈ RL and Zr[t] ∈ RL . For the additive noise of each receiver we
have Zr[t] ∼ N (0, IL). The channel gains hi are some real constants such that

h0 ≤ · · · ≤ hs. (7.15)

We also assume that the channel input is subject to an average power constraint
P , i.e.,

1

L
E
[
‖XA‖2

]
≤ P. (7.16)

Moreover, we assume that the channel state information (CSI) is completely
known by each receiver. So we define a composite received vector for each
receiver r as follows

Xr[t] = (X̃r[t], Sr[t]). (7.17)

7.3 Main Results

The main results of this chapter is summarized in the following.

Theorem 7.1. The secret key generation capacity among m+1 terminals, as
defined in Section 7.2, that have access to an erasure broadcast channel (see
Section 7.2.1) is given by

Cers
s = (1− δ)δE (L log q) , (7.18)

where δ is the erasure probability from Alice to the rest of terminals and δE is
the erasure probability from Alice to Eve.

The converse part of Theorem 7.1 is stated in Section 7.5.1 (Theorem 7.6)
and the achievability part is stated in Section 7.5.2 (Theorem 7.7).

Theorem 7.2. The secret key generation capacity among m + 1 terminals
that have access to a state-dependent deterministic broadcast channel (see Sec-
tion 7.2.2) is given by

Cdet
s =

s∑

j=1

[rankF j − rankF j−1]

(
j−1∑

i=0

ρi

)
log q, (7.19)

where ρi , δi − 2δi(δ0 + · · ·+ δi−1)1{i>0} − δ2i .

The proof of Theorem 7.2 is stated in Section 7.6.
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Theorem 7.3. The secret key generation capacity among m+1 terminals that
have access to a state-dependent Gaussian broadcast channel (see Section 7.2.3)
is upper bounded by

Cgaus
s ≤ 1

2
L

s∑

i=0

s∑

j=0

δiδj log

(
1 +

h2iP

1 + h2jP

)
. (7.20)

Also the secrecy capacity can be lower bounded by the solution of the following
optimization problem

Cgaus
s ≥





max
∑s

i=1 ∆iLRi

subject to
∑s

i=1 Pi = P
Pi ≥ 0, ∀i ∈ [1 : s],

(7.21)

where Ri is given in (7.75) and ∆i , (1 − θi)θi such that θi =
∑i−1

j=0 δj.
Moreover, for the high dynamic range case where hi ≫ hi−1, ∀i ∈ [1 : s],

and when we are in high SNR regime we can write

Cgaus
s

·
=

1

2
L

s∑

i=1

∆i log
h2i
h2i−1

, (7.22)

where we use “
·
=” for the exponential equality.

7.4 Upper Bound for the Key Generation Capacity of
Independent Broadcast Channels

The secret key generation capacity among multiple terminals (without eaves-
dropper having access to the broadcast channel) is completely characterized in
[85]. By using this result, it is possible to state an upper bound for the secrecy
capacity of the key generation problem among multiple terminals where the
eavesdropper has also access to the broadcast channel. This can be done by
adding a dummy terminal to the first problem and giving all the eavesdropper’s
information to this dummy node and let it to participate in the key generation
protocol. By doing so, the secret key generation rate does not decrease. Hence
by combining [85, Theorem 4.1] and [85, Lemma 5.1], the following result can
be stated.

Theorem 7.4. The secret key generation capacity among m+ 1 terminals as
defined in Definition 7.2, is upper bounded as follows

Cs ≤ max
PX0

min
λ∈Λ([0:m])


H(X[0:m]|XE)−

∑

B([0:m]

λBH(XB|XBc , XE)


 , (7.23)

where Λ([0 : m]) is the set of all collections λ = {λB : B ( [0 : m], B 6= ∅} of
weights 0 ≤ λB ≤ 1, satisfying

∑

B([0:m],i∈B

λB = 1, ∀i ∈ [0 : m]. (7.24)
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Note that in the above expression for the upper bound, it is possible to change
the order of maximization and minimization [85, Theorem 4.1].

Now, for our problem where the channel from Alice to the other terminals
are assumed to be independent, we can further simplify the upper bound given
in Theorem 7.4, as stated in Theorem 7.5.

Theorem 7.5. If the channels from Alice to the other terminals are indepen-
dent, as described in (7.1), then the upper bound stated in Theorem 7.4, for the
secret key generation capacity is simplified to

Cs ≤ max
PX0

min
j∈[1:m]

I(X0;Xj |XE) (7.25)

≤ min
j∈[1:m]

max
PX0

I(X0;Xj |XE). (7.26)

Proof. First, note that we can write

H(X[0:m]|XE)
(a)
=

m∑

j=0

H(Xi|XE, X[0:j−1])

(b)
= H(X0|XE) +

m∑

j=1

H(Xj |X0), (7.27)

where (a) follows from the chain rule and (b) follows from the independence of
the channels. Similarly, for every B ( [0 : m] we can expand H(XB|XBc , XE)
as follows

H(XB|XBc , XE) = H(X0|XBc , XE) +
∑

j∈B

H(Xj |X0). (7.28)

Now, from Theorem 7.4, we know that for every λ ∈ Λ([0 : m]) there exists a
distribution PX0 such that Cs is upper bounded by

Cs ≤ H(X[0:m]|XE)−
∑

B([0:m]

λBH(XB|XBc , XE)

= H(X0|XE) +

m∑

j=1

H(Xj|X0)

−
∑

B([0:m]

λB


H(X0|XBc , XE) +

∑

j∈B

H(Xj |X0)




(a)
= H(X0|XE)−

∑

B([0:m], 0∈B

λBH(X0|XBc , XE)

+

m∑

j=1

H(Xj |X0)−
m∑

j=1

∑

B([0:m], j∈B

λBH(Xj|X0)
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(b)
= H(X0|XE)−

∑

B([0:m], 0∈B

λBH(X0|XBc , XE)

=
∑

B([0:m], 0∈B

λBI(X0;XBc |XE), (7.29)

where in (a) we have changed the order of summation over j and B, and
(b) follows from (7.24). In order to find the best upper bound we proceed as
follows. For every λ and PX0 we can write

A ,
∑

B([0:m], 0∈B

λBI(X0;XBc |XE)

≥
∑

B([0:m], 0∈B

λB min
j∈Bc

I(X0;Xj |XE)

≥
∑

B([0:m], 0∈B

λB min
j∈[1:m]

I(X0;Xj |XE)

= min
j∈[1:m]

I(X0;Xj |XE). (7.30)

Let us define i = argminj∈[1:m] I(X0;Xj|XE). Then, note that λB = λBc = 1
where Bc = {i} is a valid choice according to the condition of Theorem 7.4,
i.e., they satisfy (7.24). Now, for this choice we have the chain of inequalities
in (7.30) is satisfied with equalities.

Combining all of the above arguments, for the secrecy upper bound we can
write

Cs ≤ max
PX0

min
j∈[1:m]

I(X0;Xj|XE)

≤ min
j∈[1:m]

max
PX0

I(X0;Xj|XE). (7.31)

Remark 7.1. Note that (7.25) is the best upper bound one might hope for an
independent broadcast channel using the results of [85].

Remark 7.2. Using [84, Theorem 7] or [83, Theorem 2], we observe that the
bound given in (7.26) is indeed tight for the two terminals problem where we
have the Markov chains XB ↔ XA ↔ XE (when the channels are independent)
or XA ↔ XB ↔ XE (when the channels are degraded).

7.5 Group Secret Key Agreement over Erasure Broadcast
Channels

In this section, we will be going to characterize the secret key generation
capacity among multiple terminals communicating over an erasure broadcast
channel and state a proof for Theorem 7.1.
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7.5.1 Upper Bound for the Key Generation Capacity

From Theorem 7.5, we can state an upper bound for the secret key sharing
capacity among multiple terminals where Alice broadcasts information over an
erasure channel as given in the following result, Theorem 7.6.

Theorem 7.6. The key generation capacity defined in Definition 7.2 can be
upper bounded as follows

Cers
s ≤ (1− δ)δE (L log q) . (7.32)

Proof. As mentioned before, by using Theorem 7.5 we can upper bound the
secrecy capacity as follows

Cers
s ≤ min

j∈[1:m]
max
PXA

I(XA,Xj |XE)

(a)
= max

PXA

I(XA,XB|XE)

= max
PXA

[H(XA|XE)−H(XA|XE,XB)]

= max
PXA

[δE − δEδ]H(XA)

= (1 − δ)δE (L log q) , (7.33)

where (a) follows because of the symmetry of the problem. Note that XB and
XE are random variables which are “erased” versions of XA, with erasure
probabilities δ and δE respectively. This concludes the theorem.

7.5.2 Lower Bound for the Key Generation Capacity

Here we describe and analyze our achievability scheme for the secret key
generation over erasure broadcast channels. The proposed scheme consists of
several phases and it proceeds as follows.
Private Phase:

1. Alice broadcasts n packets, x1, . . . ,xn, where xi ∈ FL
q and xi ∼ Uni

(
FL
q

)

(we will call them “x-packets”). Of these, n∗ packets are received by at
least one honest node. This set is denoted by N∗ where n∗ = |N∗|.

Public Discussion (Initial Phase):

1. Each honest node sends Alice publicly a feedback message specifying
which x-packets it received. Let ITi

denotes the set of packets’ indices
received by the ith terminal Ti.

2. Alice constructs h = δE·n∗ linear combinations of the x-packets, y1, . . . ,yh

(we will call them “y-packets”), as follows:

(i) She divides the set N∗ of x-packets that were received by at least one
honest node into non-overlapping subsets, such that each subset consists
of all the packets that were commonly received by a different subset of
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honest nodes. To be more precise, let S be an arbitrary non-empty subset
of [1 : m] and let us define the set

NS,S ,
{
i ∈ [1 : n] | i ∈ ITj

: ∀j ∈ S, and i /∈ ITj
: ∀j /∈ S

}
. (7.34)

Then we have
N∗ =

⋃

∅6=S⊆[1:m]

NS,S. (7.35)

(ii) From each such subset of packets NS,S, she creates δE · nS,S linear
combinations using the construction described in Lemma 7.1 (provided
in the Appendix 7.A), where nS,S , |NS,S|.
Then she publicly reveals the coefficients she used to create all the y-
packets.

3. Each node Ti reconstructs as many (say hi) of the y-packets as it can
(based on the x-packets it received in step #1). For hi we can write

hi =
∑

∅6=S⊆[1:m]: i∈S

δE · nS,S. (7.36)

Note that as n grows we have hi → E [hi] which is equal to

E [hi] = (1− δ)δEn. (7.37)

Public Discussion (Reconciliation Phase):

1. Alice creates h − mini hi linear combinations of the y-packets (we will
call them “z-packets”), using the construction provided in Lemma 7.2
(provided in the Appendix 7.A). She publicly reveals both the contents
and the coefficients of the z-packets, such that each node Ti receives at
least h− hi of them.

2. Each node Ti combines the h− hi z-packets it received with the hi y-
packets it recreated in phase 1, and reconstructs all the y-packets.

3. Alice creates l = mini hi linear combinations of the y-packets, k1, . . . , kl
(we will call them “k-packets”), using the construction stated in Lemma 7.3
(provided in the Appendix 7.A). She publicly reveals the coefficients she
used to create all the k-packets.

4. Each node Ti reconstructs all the k-packets. The common secret key is
the concatenation of all the k-packets, K = {k1, . . . , kl}.

Now we may summarize the above achievability scheme as follows based on
Definition 7.1. At t = 0 Alice generates the random variableW0 = {x1, . . . ,xn}
where xi ∼ Uni

(
FL
q

)
. We have also W1:m = ∅. For each time t, 1 ≤ t < n, she

broadcastsX0[t] = xt and there is no public discussions afterwards; namely we
have D[t] = ∅. After the nth transmission by Alice there is a public discussion
in many rounds; simplified as follows. We haveD[n] = (P1, P2, P3, P4) where P1

denotes the set of indices ITi
that have been sent back by the honest terminals,

P2 denotes the coefficients of the y-packets, P3 denotes the z-packets and their
coefficients, and finally P4 represents the coefficients of k-packets.
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Theorem 7.7. The achievable secret key generation rate of the above scheme
is

Rers
s = (1− δ)δE (L log q) . (7.38)

Proof. The way that the achievability scheme is proposed, constructively sat-
isfies Condition (7.5).

To prove Condition (7.7) we proceed as follows. Let us define l , l/n. Then
we can write

H(K) = H(K, l) = H(K|l) +H(l)

≥ H(K|l)
= H(K|α < l < β) · P

[
α < l < β

]

+H(K|l ≥ β) · P
[
l ≥ β

]
+H(K|l ≤ α) · P

[
l ≤ α

]

≥ H(K|α < l < β) · P
[
α < l < β

]

≥ nα (L log q)
[
1− P

[
l ≤ α

]
− P

[
l ≥ β

]]
, (7.39)

where α = µ − γ and β = µ + γ for some small γ, 0 < γ ≤ µ, such that
µ = (1 − δ)δE. Then by applying the concentration result of Lemma 7.4 (see
Appendix 7.A) we have

P
[
l ≤ α

]
≤ m exp

(
− γ

2

2µ
n

)
, a, (7.40)

and

P
[
l ≥ β

]
≤ exp

(
−mγ

2

3µ
n

)
, b. (7.41)

Hence, we can observe that by choosing

Rers
s = µ(L log q) (7.42)

and

ǫ = µ (L log q) [a+ b] + γ (L log q) [1− a− b] (7.43)

we have
1

n
H(K) > Rers

s − ǫ (7.44)

satisfied. Then, we get the desired result by making γ arbitrarily small because
we have ǫ→ 0 if γ → 0.

To prove Condition (7.6) we need to show that

I(K;Xn
E , P1, P2, P3, P4) < ǫ. (7.45)

By using a similar technique that we used above to bound H(K), (using
Lemma 7.1 and some concentration results for nS,S) we can show that

I(Y ;Xn
E , P1, P2) < ǫ. (7.46)
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Using Lemma 7.3, by construction we have also

I(K;P3, P4) = 0. (7.47)

Now we know that the coefficients of the z-packets and k-packets form a basis
(see Lemma 7.3) so the random variable Y and the random variable (K, P3, P4)
are equivalent (having one we have the other). Then we can write (7.46) as
follows

I(Y ;Xn
E , P1, P2) = I(K, P3, P4;X

n
E , P1, P2)

= I(P3, P4;X
n
E , P1, P2)

+ I(K;Xn
E , P1, P2|P3, P4) < ǫ, (7.48)

so
I(K;Xn

E , P1, P2|P3, P4) < ǫ. (7.49)

Now we can expand

I(K;Xn
E , P1, P2, P3, P4) = I(K;P3, P4)

+ I(K;Xn
E , P1, P2|P3, P4), (7.50)

where the first term is zero by (7.47) and second term is very small because of
(7.49), so we are done.

Combining the results of Theorem 7.6 and Theorem 7.7 we have proved
Theorem 7.1.

Remark 7.3. It is worthwhile to mention that this result can be easily ex-
tended to the asymmetric case where the channels to the legitimate users are
not statistically identical. Moreover, notice that in the symmetric case, the key-
generation rate is the same for any m ≥ 1, and therefore this protocol scales
ideally with network size. Finally, the critical difference between m = 1 and
m > 1 is that the key-reconciliation necessitated the use of ideas from NC,
which we believe is a new observation.

7.6 Group Secret Key Agreement over Deterministic
Broadcast Channels

In this section, we prove Theorem 7.2 which states the secret key generation
capacity for the deterministic broadcast channel defined in Section 7.2.2.

7.6.1 Upper Bound for the Key Generation Capacity

Using Theorem 7.5 we know that the secret key generation capacity for
independent broadcast channel can be upper bounded as

Cdet
s ≤ min

j∈[1:m]
max
PX0

I(X0;Xj |XE). (7.51)

Then we have the following result, Theorem 7.8.
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Theorem 7.8. The key generation capacity of the deterministic broadcast
channel introduced in Section 7.2.2 is upper bounded by (7.19), namely,

Cdet
s ≤

s∑

j=1

[rankF j − rankF j−1]

(
j−1∑

i=0

ρi

)
log q, (7.52)

where ρi , δi − 2δi(δ0 + · · ·+ δi−1)1{i>0} − δ2i .

Proof. From (7.51) and because of the symmetry of the problem we have

Cdet
s ≤ max

PXA

I(XA;XB|XE) = max
PXA

[H(XA|XE)−H(XA|XB,XE)] . (7.53)

Then we can write

H(XA|XE) =

s−1∑

i=0

δi

[
H(XA|X̃E, SE = i)

]

=

s−1∑

i=0

δi

[
H(XA, X̃E|SE = i)−H(X̃E|SE = i)

]

=

s−1∑

i=0

δi [H(XA)−H(F iXA)] , (7.54)

and similarly

H(XA|XB,XE) =
s−1∑

i=0

[
2δi(δ0 + · · ·+ δi−1)1{i>0} + δ2i

]
[H(XA)−H(F iXA)] .

(7.55)

Thus, we have

I(XA;XB|XE) =

s−1∑

i=0

ρi [H(XA)−H(F iXA)] (7.56)

where ρi , δi − 2δi(δ0 + · · ·+ δi−1)1{i>0} − δ2i . Now, by knowing that

H(F iXA) = H(F iXA,F i−1XA) (7.57)

and applying the chain rule recursively we have

H(F iXA) =

i∑

j=1

H(F jXA|F j−1XA). (7.58)
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So for I(XA;XB|XE) we can write

I(XA;XB|XE) =

s−1∑

i=0

ρi[H(XA)−H(F iXA)]

=

s−1∑

i=0

ρi




s∑

j=1

H(F jXA|F j−1XA)−
i∑

j=1

H(F jXA|F j−1XA)




=

s−1∑

i=0

ρi

s∑

j=i+1

H(F jXA|F j−1XA)

=
s∑

j=1

H(F jXA|F j−1XA)

j−1∑

i=0

ρi. (7.59)

Hence we can upper bound Cdet
s as follows

Cdet
s ≤ max

PXA

I(XA;XB|XE)

= max
PXA

s∑

j=1

H(F jXA|F j−1XA)

j−1∑

i=0

ρi

= max
PXA

s∑

j=1

H ([F j − F j−1]XA|F j−1XA)

j−1∑

i=0

ρi

(a)

≤ max
PXA

s∑

j=1

H ([F j − F j−1]XA)

j−1∑

i=0

ρi

(b)
=

s∑

j=1

rank (F j − F j−1)

(
j−1∑

i=0

ρi

)
log q

(c)
=

s∑

j=1

[rankF j − rankF j−1]

(
j−1∑

i=0

ρi

)
log q, (7.60)

where (a) is true because conditioning reduces the entropy, (b) is true because
uniform distribution on XA achieves the maximum values for all the entropies
in the summation, and finally (c) is true because of the assumption we have
made in (7.12). Also, note that

j−1∑

i=0

ρi = θj(1− θj) ≥ 0, (7.61)

where θj =
∑j−1

i=0 δi.
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7.6.2 Lower Bound for the Key Generation Capacity

Because of (7.11) we can find subspaces Π1, . . . ,Πs, such that Πi ∩Πj = 0
if i 6= j and they also satisfy

Π1 ⊕ kerF 1 = FL
q ,

Π2 ⊕Π1 ⊕ kerF 2 = FL
q ,

...

Πs ⊕ · · · ⊕Π1 ⊕ kerF s = FL
q . (7.62)

Then for i ∈ [1 : s] we have dimΠi = rankF i − rankF i−1.
In our proposed achievability scheme, Alice uses superposition coding where

she creates the vector

XA[t] = XA1[t] + · · ·+XAs[t], (7.63)

such that XAi[t] ∈ Πi. Because of (7.62), {Π1, . . . ,Πs} form a basis for FL
q

so every vector XA[t] ∈ FL
q can be uniquely decomposed as (7.63). Now each

XAi[t] ∈ Πi can be considered as a vector that is transmitted by Alice and
will be received independently by each trusted terminal and Eve with erasure
probability

θi ,

i−1∑

j=0

δi. (7.64)

Note that the vector XAi[t] is correctly received by the rth receiver only if
Sr ≥ i.

So we may view the broadcast channel from Alice to the rest of terminals
as s independent packet erasure channels ; where Πi is the set of messages
transmitted over the ith channel (layer) and the erasure probability of the ith
channel is θi.

Then we proceed as follows. On each layer k, we run independently the
scheme propose in Section 7.5.2 for the secret key sharing problem over an
erasure broadcast channel. Then we can state the following result, Theorem 7.9.

Theorem 7.9. The achievable secret key generation rate of the above scheme
for each layer k is given by

Rdet
k = (1− θk)θk dim(Πk) log q. (7.65)

So for the total achievable secrecy rate we have

Rdet
s =

s∑

j=1

(1− θj)θj dim (Πj) log q

=

s∑

j=1

[rankF j − rankF j−1]

(
j−1∑

i=0

ρi

)
log q, (7.66)

because (1− θj)θj =
∑j−1

i=0 ρi and dim(Πj) = rankF j − rankF j−1.



7.7. Group Secret Key Agreement over State-dependent Gaussian
Broadcast Channels 161

We observe that this matches the upper bound stated in Theorem 7.8,
and therefore yields a characterization of the group key-agreement rate for
deterministic channels; the result stated in Theorem 7.2.

Remark 7.4. Similar to the erasure channel problem, this result can also be
easily extended to the asymmetric case where the channels to the legitimate
users are not statistically identical. Moreover, the key-generation rate is the
same for any m ≥ 1. However, the critical difference between m = 1 and
m > 1 is that the key-reconciliation necessitated the use of ideas from NC.

7.7 Group Secret Key Agreement over State-dependent
Gaussian Broadcast Channels

In this section, we use the results derived in the previous sections in order
to study the secret key generation capacity among multiple terminals having
access to a state-dependent Gaussian broadcast channel 7.

7.7.1 Upper Bound for the Key Generation Capacity

In order to upper bound the secrecy capacity for the Gaussian broadcast
channel, we cannot apply the result of Theorem 7.5 directly because this re-
sult has been derived under the assumption that the transmitted and received
symbols are discreet. However, the work in [93] has extended the results of [85]
for continuous channels. So by using [93, Theorem 6.2], we can write an upper
bound for the secrecy capacity similar to Theorem 7.4 with the addition of a
power constraint over the transmitted symbols. Then we can state the following
result, as stated in Theorem 7.10.

Theorem 7.10. The key generation capacity of the Gaussian broadcast chan-
nel given in (7.14) using public discussions is upper bounded as follows

Cgaus
s ≤ 1

2
L

s∑

i=0

s∑

j=0

δiδj log

(
1 +

h2iP

1 + h2jP

)
. (7.67)

Proof. Using [93, Theorem 6.2] and by proceeding similar steps to the proof of
Theorem 7.5, we can write

Cgaus
s ≤ I(XA;XB|XE) = I(XA; X̃B, SB|X̃E, SB), (7.68)

where SE and SB represent the random variables corresponding to Eve’s and
Bob’s channel states respectively. Hence, we can write

Cgaus
s ≤ I(XA;XB|XE)

= H(X̃B, SB|X̃E, SE)−H(X̃B, SB|X̃E, SE,XA)

7. In this section, with an abuse of notation, we use H(·) to denote for the differential
entropy as well.



162 Group Secret Key Agreement over Wireless Broadcast Channels

(a)
= H(X̃B, SB|X̃E, SE)−H(X̃B, SB|XA)

= H(X̃B, SB|X̃E, SE)−H(SB|XA)−H(X̃B|SB,XA)

(b)
= H(X̃B, SB|X̃E, SE)−H(SB)−H(ZB)

= H(X̃B, X̃E|SE, SB) +H(SE, SB)

−H(X̃E, SE)−H(SB)−H(ZB)

= H(X̃B, X̃E|SE, SB)−H(X̃E|SE)−H(ZB)

=

s∑

i=0

s∑

j=0

δiδjH(X̃B, X̃E|SE = j, SB = i)

−
s∑

k=0

δkH(X̃E|SE = k)−H(ZB)

=

s∑

i=0

s∑

j=0

δiδjH(hiXA +ZB, hjXA +ZE)

−
s∑

k=0

δkH(hkXA +ZE)−H(ZB)

=

s∑

i=0

s∑

j=0

δiδjH(hiXA +ZB|hjXA +ZE)−H(ZB)

(c)

≤
s∑

i=0

s∑

j=0

δiδj
2

log
[
(2πe)L(cov(hiXA +ZB|hjXA +ZE))

]
−H(ZB),

(7.69)

where (a) is true since we have the Markov chain XB ↔ XA ↔ XE, (b)
follows from the fact that the state variables are independent of XA and given

XA and SB the only uncertainty left in X̃B is that of noise ZB and finally (c)
follows from the fact that for a fixed variance, Gaussian distribution maximizes
the entropy.

The inequality (c) in (7.69) is achieved when (hiXA +ZB|hjXA +ZE) has
a Gaussian distribution. A sufficient condition for this to be satisfied is when
XA, ZB, and ZE are Gaussian and independent. This observation makes the
calculation of

1

2
log
[
(2πe)L cov(hiXA +ZB|hjXA +ZE)

]
(7.70)

much easier as it is equivalent to the evaluation of H(hiXA + ZB, hjXA +
ZE) −H(hjXA + ZE) when XA, ZB, and ZE are Gaussian and independent
as shown below,

1

2
log
[
(2πe)L cov(hiXA +ZB|hjXA +ZE)

]
=

= H
(
hiXA +ZB, hjXA +ZE

)
−H

(
hjXA +ZE

)
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=

L∑

k=1

H
(
hiXA,k + ZB,k, hjXA,k + ZE,k

)
−H

(
hjXA,k + ZE,k

)

=
L

2

[
log
(
(2πe)2(1 + h2iP + h2jP )

)
− log

(
2πe(1 + h2jP )

)]
, (7.71)

where E
[
X2

A,k

]
= P and E

[
Z2
B,k

]
= E

[
Z2
E,k

]
= 1 for all k ∈ [1 : L].

Hence, the upper bound on the secrecy capacity becomes as follows

Cgaus
s ≤ I(XA;XB|XE)

≤
s∑

i=0

s∑

j=0

δiδj
2

log
(
(2πe)L var(hiXA +ZB|hjXA +ZE)

)
−H(ZB)

=
s∑

i=0

s∑

j=0

δiδjL

2
log
(
(2πe)2(1 + h2iP + h2jP )

)

−
s∑

i=0

s∑

j=0

δiδjL

2
log
(
2πe(1 + h2jP )

)
− L

2
log(2πe)

=

s∑

i=0

s∑

j=0

δiδjL

2

[
log(1 + h2iP + h2jP )− log(1 + h2jP ))

]

=
1

2
L

s∑

i=0

s∑

j=0

δiδj log

(
1 +

h2iP

1 + h2jP

)
, (7.72)

where we are done.

7.7.2 Lower Bound for the Key Generation Capacity

Before giving the achievability scheme, let us define a nested message set,
degraded channel wiretap scenario as follows.

Definition 7.3. Assume a wiretap channel scenario where there is a transmit-
ter called Alice that broadcasts XA and there are s+1 receivers Yi where the ith
receiver receives Yi according to the broadcast channel (XA, p(y0, . . . , ys|x),Y0×
· · · × Ys)) such that

p(y0, . . . , ys|xA) = p(ys|xA) · p(ys−1|ys) · · · p(y0|y1). (7.73)

Suppose that Alice has s messages W1, . . . ,Ws where Wi ∈ {1, . . . , 2LRi}
and Wi ∼ Uni(1 : 2LRi). The goal is that she wants to broadcast these messages
such that ∀i:
(i) each message Wi should be decodable by the receivers Yi, . . . , Ys with a neg-
ligible error probability, and
(ii) all the receivers Y0, . . . , Yi−1 should be ignorant about the message Wi,
namely for the leakage rate we have

R
(L)
l,i ,

1

L
I(Wi+1, . . . ,Ws;Y

1:L
i ) ≤ ǫL, ∀i ∈ [0 : s]. (7.74)
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Then we can state the following result.

Theorem 7.11. Using a properly designed layered wiretap code similar to [90]
we can achieve the following set of rates for the nested message set, degraded
Gaussian wiretap channel

Ri =
1

2

[
log

(
1 +

h2iPi

1 + h2i Ii

)
− log

(
1 +

h2i−1Pi

1 + h2i−1Ii

)]
, (7.75)

∀i ∈ [1 : s], where Ii ,
∑s

j=i+1 Pj.

By using a layered coding scheme for the nested message set, degraded
channel wiretap channel defined in Definition 7.3, we can convert the Gaussian
channel given in (7.14) to a set of s independent erasure channels where the
erasure of the messages for each channel (layer) depends on the receiver channel
state. In fact using the layered coding scheme for the wiretap channel, we
mimic the orthogonality behavior that we have for the deterministic channel
as described by (7.11) and (7.62).

More precisely, we assume that Alice broadcasts the L-length vector

XA[t] =

s∑

i=1

XAi[t], (7.76)

where she maps Wi (the messages corresponding to the ith layer) to XAi[t]
according to the codebook described in the following. We construct s code-

books Ĉi(2LR̂i , L) each contains 2LR̂i codewords XL
Ai by choosing L symbols

independently from the Gaussian distribution N (0, Pi) where

R̂i =
1

2
log

(
1 +

h2iPi

1 + h2i Ii

)
. (7.77)

Each codebook Ĉi, i ∈ [1 : s], is divided into 2LRi bins where Ri is given by
(7.75). At each layer i, the message Wi is coded so as to be secure from all
receivers in states j < i. This is done by a standard wiretap code (see also
[90]), where the message Wi is the bin-index and the transmit sequence XAi

is a (random) sequence from the the bin. So, the ith layer can transmits 2LRi

messages securely from the “weaker” receivers. Following a similar argument
as stated in [90], we can show that the receiver r which observes the channel
state Sr = i can decode messages up to layer i and is ignorant about messages
of layers above i. So, equivalently, we can say that the message Wi experiences
erasure probability

θi =

i−1∑

j=0

δj , (7.78)

when it passes through the channel (7.14).
Now for each layer i, we run the interactive secret key sharing scheme intro-

duced in Section 7.5.2 where Alice broadcasts a sequence of random messages
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Wn
i . Then, by discussing over the public channel, the trusted terminals recon-

cile their secret messages to build a common key. The key generation rate for
each layer is ∆iLRi, so for a fixed power allocation we achieve the following
secrecy rate

Rgaus
s ≤

s∑

i=1

∆iLRi, (7.79)

where Ri is defined in (7.75) and ∆i , (1− θi)θi.
The maximum secrecy rate is obtained by optimizing the above rate over

the power allocations {Pi}si=1. Thus we can write

Rgaus
s =





max
∑s

i=1 ∆iLRi

subject to
∑s

i=1 Pi ≤ P
Pi ≥ 0, ∀i ∈ [1 : s].

(7.80)

Because R1 is an increasing function of P1 when other Pi are kept fixed and Ri

does not depend on P1 for i > 1 we can write the power constant inequality as
an equality. We also apply a change of variables to Program (7.80) from {Pi}
to {Ik}. So we can rewrite Program (7.80) as follows

Rgaus
s =

{
min −∑s

i=1 ∆iLRi

subject to −[Ik−1 − Ik] ≤ 0, ∀k ∈ [1 : s],
(7.81)

where I0 = P , Is = 0, and we have

Ri =
1

2
log

(
1 + h2i Ii−1

1 + h2i Ii
· 1 + h2i−1Ii

1 + h2i−1Ii−1

)
. (7.82)

Because the constraints of the Program (7.81) are affine we can apply the
KKT conditions (see [94, Proposition 5.4.1]) to obtain a necessary condition
for optimum power allocation. By defining the Lagrangian L as

L(P1, . . . , Ps, λ1, . . . , λs) = −
s∑

i=1

∆iLRi +

s∑

i=1

λi[Ii − Ii−1], (7.83)

we may write a set of necessary conditions to maximize Rs as follows





∂L
∂Ik

= 0, ∀k ∈ [1 : s− 1],

λk[Ik − Ik−1] = 0, ∀k ∈ [1 : s],
Ik ≤ Ik−1, ∀k ∈ [1 : s],
λk ≥ 0, ∀k ∈ [1 : s].

(7.84)

In general solving analytically the set of conditions stated in (7.84) is a tedious
task (for more discussions on this refer to Section 7.B). However, it is pos-
sible to reformulate the optimization problem (7.81) as a Generalized Linear
Fractional Program (see Appendix 7.C for some basic definitions), and then
by applying the results of [95] and [96], it is possible to find numerically the



166 Group Secret Key Agreement over Wireless Broadcast Channels

optimal power allocation for each layer (see Appendices 7.C and 7.D for more
discussion).

Moreover, one of the important special case of this problem is when there
is a large dynamic range between the channel states, and we focus on this case
applied to the high SNR regime. This enables us to demonstrate an optimal
power allocation for this regime in Section 7.7.3.

7.7.3 High SNR Regime

By large dynamic range in the states, we mean that hi ≫ hi−1, ∀i ∈ [1 : s],
where this comparison is done with respect to SNR. In particular, we denote

h2i = SNR−αi , i ∈ [0 : s], (7.85)

where h2i > h2i−1 implying that αi < αi−1. Suppose we apply a power allocation

which is given as follows, Pi = SNRβi , ∀i ∈ [1 : s], with the assumption that
βi < βi−1. Since βi < βi−1, in high SNR regime Ii is dominated by SNRβi+1 .
Using this approximation, we can rewrite the expression for Ri from (7.75) as
follows

Ri
·
=

1

2
log

(
1 +

SNRβi−αi

1 + SNRβi+1−αi

)
− 1

2
log

(
1 +

SNRβi−αi−1

1 + SNRβi+1−αi−1

)

·
=

1

2

[(
(βi − αi)− (βi+1 − αi)

+
)+]

log SNR

− 1

2

[(
(βi − αi−1)− (βi+1 − αi−1)

+
)+]

log SNR, (7.86)

where we use the notation “
·
=” and “

·
≤” for exponential equality and inequality

with respect to SNR. Using the power allocation β1 = 1− ǫ and βi = αi−1− ǫ,
∀i ∈ [2 : s], with ǫ > 0 and ǫ≪ 1 we can write

Ri
·
= (αi−1 − ǫ− αi) log SNR

·
= (αi−1 − αi) log SNR. (7.87)

Intuitively βi = αi−1 can be interpreted as a power allocation matching the
channel gains. So, for the total achievable secrecy rate we have

Rgaus
s

·
=

1

2
L

s∑

i=1

∆i(αi−1 − αi) log SNR =
1

2
L

s∑

i=1

∆i log
h2i
h2i−1

. (7.88)

Now, we state the upper bound to Cgaus
s in the high SNR regime in Theo-

rem 7.12.

Theorem 7.12. Assuming high-SNR regime and large dynamic range over
channel states we can upper bound Cgaus

s as follows

Cgaus
s

·
≤ 1

2
L

s∑

i=1

∆i(αi−1 − αi) log SNR. (7.89)
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This upper bound is matched with the achievable rate derived in (7.88), so the
above equation characterizes Cgaus

s in this regime.

Proof. Let us compute the upper bound to Cgaus
s in the high-SNR regime as

follows. From Theorem 7.10 and assuming that h2i = SNR−αi we can write

Cgaus
s ≤ 1

2
L

s∑

i=0

s∑

j=0

δiδj
[
log(1 + h2iP + h2jP )− log(1 + h2jP )

]

·
=

1

2
L
∑

i>j

δiδj(αj − αi) log SNR

=
1

2
L

s∑

i=1

i−1∑

j=0

(αj − αi)δiδj log SNR

=
1

2
L

s∑

i=1

i−1∑

j=0




i∑

k=j+1

(αk−1 − αk)


 δiδj log SNR

=
1

2
L

s∑

i=1

i−1∑

j=0

i∑

k=j+1

(αk−1 − αk)δiδj log SNR

(a)
=

1

2
L

s∑

k=1

s∑

i=k

k−1∑

j=0

(αk−1 − αk)δiδj log SNR

=
1

2
L

s∑

k=1

∆k(αk−1 − αk) log SNR, (7.90)

where (a) simply follows by exchanging the order of the summations and we
are done.

7.8 Concluding Remarks

In this chapter, we have considered the problem of secret key sharing among
multiple trusted terminals having access to a wireless broadcast channel in the
presence of a passive eavesdropper Eve. We assume that Eve also observes a
noisy signal from the broadcast channel. Moreover, we assume that the legiti-
mate terminals can publicly discuss over a rate-unlimited public channel which
is also overheard by Eve.

For the aforementioned scenario, we have characterized the secret key shar-
ing capacity and proposed efficient (polynomial-time algorithms) schemes to
achieve it for the case of erasure as well as state-dependent deterministic broad-
cast channels.

For the case of state-dependent Gaussian broadcast channel, we have used a
nested-set degraded channel wiretap code to mimic the orthogonality of differ-
ent layers we had for the deterministic broadcast channel. Then, we converted
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the problem to multiple parallel erasure channels and applied the scheme devel-
oped for the erasure channel on every layer (channel) independently. By doing
so, we have proposed an achievability scheme for the state-dependent Gaussian
broadcast channel. Although the achievable secrecy rate is not matched the
upper bound we have, for the high dynamic range and high SNR regime we
have shown that they match in the sense of degrees of freedom.
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7.A Some Lemmas

Lemma 7.1. Consider a set of n packets x1, . . . ,xn, xi ∈ FL
q , where xi ∼

Uni
(
FL
q

)
and all packets xi are independent from each other. Assume that Eve

has overheard nE of these packets. Call the packets Eve has w1, . . . ,wnE
. Then

it is possible to create n′ = n−nE linear combinations of the x1, . . . ,xn packets
over the finite field Fq, say y1, . . . ,yn′ , in polynomial time, so that these are
secure from Eve, i.e.,

I(y1, . . . ,yn′ ;w1, . . . ,wnE
) = 0. (7.91)

The same result holds with high probability (of order 1− O(q−1)) if the linear
combinations are selected uniformly at random over Fq.

Proof. Let us construct a matrix X that has as rows the packets x1, . . . ,xn.
Similarly, construct matrices Y andW that have as rows the packets y1, . . . ,yn′

and w1, . . . ,wnE
.

Note that because the packets w1, . . . ,wnE
are by definition a subset of

the packets x1, . . . ,xn, we can write W = AEX, with AE ∈ FnE×n
q that

has zeros and ones as elements. We will also construct the y-packets as linear
combinations of the x-packets over a field Fq. We will then have that Y = AX,

where A ∈ F(n−nE)×n
q is the matrix we are interested in designing. Thus we can

write [
Y

W

]
=

[
A

AE

]
X. (7.92)

We now proceed by expanding H(Y |W ). We have

H(Y |W ) = H(Y ,W )−H(W )

=
[
rank (B)− rank(AE)

]
L log q

=
[
rank (B)− nE

]
L log q, (7.93)

where B =

[
A

AE

]
and L is the length of each packet xi. Now the only way

that we have H(Y |W ) = H(Y ) is that B becomes a full rank matrix.
Using coding theory we will construct such a matrix B, without knowing

AE. All we know is that in each row ofAE there is only one 1 and the remaining
elements are zero; so all of the vectors in the row span of AE have Hamming
weight less than or equal to nE. Now, if we choose A to be a generator matrix
of an maximum distance separable (MDS) linear code with parameters [n, n−
nE, nE + 1]q then each codeword has Hamming weight larger than or equal to
nE + 1 [48]. So the row span of A and AE are disjoint (except for the zero
vector) and the matrix B becomes full-rank for all of matrices AE that have
the aforementioned structure. For example, we may select to use a generator
matrix of a Reed-Solomon code [48], which is an MDS code, over a field of size
q = n+ 1.
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To prove the second assertion of the lemma, we note that creating vectors
yi uniformly at random is equivalent to selecting the elements of matrix A

independently uniformly at random from the field Fq. In this case we can write

P [B is full-rank] =
(qn − qnE) · · · (qn − qn−1)

qn(n−nE)

=
(
1− q−(n−nE)

)
· · · (1− q−1)

= 1−O(q−1), (7.94)

which goes to 1 as q increases.

Lemma 7.2. Consider packets y1, . . . ,yh and assume that each one of m− 1
receivers has observed a different subset of these packets of size l. We can find
h − l linear combinations of the y-packets, say z1, . . . , zh−l such that, each
receiver can use its observations and the z-packets to decode all the y-packets.

Proof. This is a standard problem formulation in the NC literature, and any of
the standard polynomial-time approaches for network code design can be used
[8].

Lemma 7.3. Consider a set of h packets y1, . . . ,yh where yi ∼ Uni
(
FL
q

)
and

assume that an eavesdropper Eve has overheard linear combinations of h− l of
these packets. Call the packets Eve has z1, . . . , zh−l. Then it is possible to create
l linear combinations of the y1, . . . ,yh packets, say k1, . . . ,kl, in polynomial
time, so that these are secure from Eve, i.e.,

I(k1, . . . ,kl; z1, . . . , zh−l) = 0. (7.95)

The same result holds with high probability (probability of order 1−O(q−1)) if
the l packets ki are created uniformly at random over Fq.

Proof. Similar to the proof of Lemma 7.1, let Y , Z and K be matrices that
have as rows the packets y1, . . . ,yh, z1, . . . , zh−l and k1, . . . ,kl. We can then
write [

K

Z

]
=

[
AK

AZ

]
Y , (7.96)

where AZ is a given known matrix, since we know the transmitted linear com-

binations, and we seek a matrix AK such that, the matrix

[
AK

AZ

]
is full rank.

Equivalently, we seek vectors k1, . . . ,kl that together with z1, . . . , zh−l form
a basis; we can do this using any of standard methods, such as Gram-Schmidt
orthogonalization.

Lemma 7.4. The value of the parameter l in Theorem 7.7 converges exponen-
tially fast in n to its expected value.
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Proof. Let us consider the random variables h, hi, and l defined in Section 7.5.2.
For convenience, we will work with the normalized random variables h , h/n,

hi , hi/n, and l , l/n. Let us also define the random variable η
(i)
j as follows

η
(i)
j =





1 if the jth x-packet is received
by Ti but not by Eve,

0 otherwise.
(7.97)

Then we can write hi =
1
n

∑n
j=1 η

(i)
j and we have µ = µi , E

[
hi
]
= (1− δ)δE .

As defined before, we have also l = mini hi.
To bound l, observe that for some small γ, 0 < γ ≤ µ, we can write

P
[
l ≥ µ+ γ

]
= P

[
hi ≥ µ+ γ : ∀i

]

= P
[
h1 ≥ µ+ γ

]m

≤ exp

(
−mγ

2

3µ
n

)
, (7.98)

where in the last inequality we use Chernoff bound [97, Chapter 4]. On the
other hand we can also write for 0 < γ ≤ µ

P
[
l ≤ µ− γ

]
≤ mP

[
h1 ≤ µ− γ

]

≤ m exp

(
− γ

2

2µ
n

)
, (7.99)

so we are done.

7.B Discussion on the Power Allocation Optimization
Problem

This section is an attempt to solve the set of necessary conditions (7.84).
We do not provide an analytical solution for the general case, however we can
derive the optimum power allocation for some special cases.

Recall that the LagrangianL of the optimization problem (7.81) is as follows

L(P1, . . . , Ps, λ1, . . . , λs) = −
s∑

i=1

∆iRi +
s∑

i=1

λi[Ii − Ii−1]. (7.100)

For more convenience, let us define hi , h2i . Then by taking the derivative of
L with respect to Ik we have

(ln 2)
∂L
∂Ik

= − (hk+1 − hk)∆k+1

(1 + hkIk)(1 + hk+1Ik)
+

(hk − hk−1)∆k

(1 + hk−1Ik)(1 + hkIk)

+ (ln 2)(λk − λk+1)

=
∆k(hk − hk−1)(1 + hk+1Ik)−∆k+1(hk+1 − hk)(1 + hk−1Ik)

(1 + hk−1Ik)(1 + hkIk)(1 + hk+1Ik)

+ (ln 2)(λk − λk+1). (7.101)
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We can further expand the derivative of L as follows

(ln 2)
∂L
∂Ik

=
[hk+1(hk − hk−1)∆k − hk−1(hk+1 − hk)∆k+1]

(1 + hk−1Ik)(1 + hkIk)(1 + hk+1Ik)
Ik

− [(hk+1 − hk)∆k+1 − (hk − hk−1)∆k]

(1 + hk−1Ik)(1 + hkIk)(1 + hk+1Ik)
+ (ln 2)(λk − λk+1)

=
(hk+1βk − hk−1αk)Ik − (αk − βk)
(1 + hk−1Ik)(1 + hkIk)(1 + hk+1Ik)

+ (ln 2)(λk − λk+1)

= Fk(Ik) + (ln 2)(λk − λk+1), (7.102)

where αk , (hk+1 − hk)∆k+1 and βk , (hk − hk−1)∆k. Let us define

Ĩk ,
αk − βk

hk+1βk − hk−1αk
, ∀k ∈ [1 : s− 1], (7.103)

and by convention we set Ĩ0 = P and Ĩs = 0.
Based on the values of αk and βk we have different situations as follows:

1. If αk < βk we can conclude that hk+1βk > hk−1αk so we have Ĩk < 0
and Fk(x) > 0 for x ≥ 0. Because we should have the condition Fk(I

∗
k ) +

(ln 2)(λ∗k−λ∗k+1) = 0 satisfied for the optimum solution we conclude that
λ∗k+1 > 0 which using the complementary slackness condition results in
I∗k = I∗k+1.

2. If hk+1βk < hk−1αk we can conclude that αk > βk so we have Ĩk < 0
and Fk(x) < 0 for x ≥ 0. Because we should have the condition Fk(I

∗
k ) +

(ln 2)(λ∗k−λ∗k+1) = 0 satisfied for the optimum solution we conclude that
λ∗k > 0 which using the complementary slackness condition results in
I∗k−1 = I∗k .

3. If αk > βk and hk+1βk > hk−1αk then we have Ĩk > 0. Moreover, we
have Fk(x) > 0 for x > Ĩk and Fk(x) < 0 for x < Ĩk. Now, there exists
three different situations.
– If Ĩk > P we conclude that Fk(x) < 0 for x ≤ P . Because we should
have the condition Fk(I

∗
k ) + (ln 2)(λ∗k − λ∗k+1) = 0 for the optimum

solution we conclude that λ∗k > 0 which by using the complementary
slackness condition results in I∗k = I∗k−1.

– If I∗k+1 ≤ Ĩk ≤ P then we have I∗k = Ĩk and we have also λk = λk+1.

– If Ĩk < I∗k+1 we conclude that Fk(I) > 0 for I ≥ I∗k+1. Because we
should have the condition Fk(I

∗
k ) + (ln 2)(λ∗k − λ∗k+1) = 0 for the opti-

mum solution we conclude that λ∗k+1 > 0 which using the complemen-
tary slackness condition results in I∗k = I∗k+1.

Lemma 7.5. If we have 0 = Ĩs < Ĩs−1 < · · · < Ĩ1 < Ĩ0 = P, then the optimal
power allocation is determined by I∗k = Ĩk where Ĩk is defined in (7.103).

Proof. From the above discussions we know that Ĩk > 0 only if αk > βk and
hk+1βk > hk−1αk. So as mentioned before ∀k ∈ [1 : s − 1] we have Fk(x) > 0
for x > Ĩk and Fk(x) < 0 for x < Ĩk.
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Now, it can be easily checked that the solution I∗k = Ĩk satisfies the set

of conditions stated in (7.84) with λ∗k = 0. Because Fk(x) > 0 for x > Ĩk
and Fk(x) < 0 for x < Ĩk so every deviation of I∗k from the Ĩk results in a
contradiction. To show this we proceed as follows.

Let us fix k. If I∗k > Ĩk then Fk(I
∗
k ) > 0 and because we have Fk(I

∗
k ) +

(ln 2)(λ∗k −λ∗k+1) = 0 then we can conclude that λ∗k+1 > 0. So by the slackness
condition given in (7.84) we have to have I∗k = I∗k+1. Now, two cases may

happen. First, if I∗k+1 < Ĩk that results in a contradiction because I∗k > Ĩk and

we should have I∗k = I∗k+1. Secondly, if I
∗
k+1 > Ĩk > Ĩk+1, then similar to the

above argument we can show that I∗k+1 = I∗k+2. Then we either encounter a
contradiction in this step or have to continue. Finally, if we did not have any
contradiction in these steps we would have I∗k = I∗k+1 = · · · = I∗s = 0. Now,

this is a contradiction because we had assumed I∗k > Ĩk > Ĩs = 0.

So the unique solution to the set of conditions (7.84) is given by I∗k = Ĩk
and λ∗k = 0 and we are done.

Now, by using Lemma 7.5 we may re-derive the achievable secrecy rate of
(7.88) as stated in Corollary 7.1.

Corollary 7.1. If we have high dynamic regime which means hi ≫ hi+1 then
for the maximum achievable secret key generation rate we have

Rgaus
s

·
=

s∑

i=1

∆i(αi−1 − αi) log SNR =

s∑

i=1

∆i log
hi

hi−1
, (7.104)

where hi = SNR−αi for i ∈ [0 : s] such that αs < αs−1 < · · · < α0 < 1.

Proof. Because hi ≫ hi + 1 we have Ĩk
·
= ∆k+1

∆k
SNRαi . The conditions for

Lemma 7.5 are satisfied so I∗k = Ĩk and for Ri, the secret key rate of each layer,
we can write

Ri = log

(
1 + hiIi−1

1 + hiIi
· 1 + hi−1Ii
1 + hi−1Ii−1

)

·
= log

(
1 + SNRαi−1−αi ∆i

∆i−1

1 + ∆i+1

∆i

·
1 + SNR−(αi−1−αi) ∆i+1

∆i

1 + ∆i

∆i−1

)

·
= (αi−1 − αi) log SNR

= log
hi

hi−1
, (7.105)

and we are done.

Corollary 7.2. If s = 2 then based on different values of channel coefficients
and probability distribution over the states we have the following cases:

1. if α1 < β1 then we have P ∗
1 = P ,
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2. if h2β1 < h0α1 then P ∗
2 = P , and finally

3. if α1 > β1 and h2β1 > h0α1 then P ∗
2 = min(Ĩ1, P ) where Ĩ1 is the solution

of equation F1(Ĩ1) = 0.

Proof. For s = 2, the set of necessary conditions becomes as follows




∂L
∂I1

= F1(I1) + (ln 2)(λ1 − λ2) = 0,

λ1[I1 − P ] = 0,
λ2[0− I1] = 0,
λ1 ≥ 0, λ2 ≥ 0.

(7.106)

Case 1: If α1 < β1 then we have h2β1 > h0α1 or equivalently Ĩ1 < 0. This
means F1(x) > 0 for x ≥ 0. Because, we should have F1(I

∗
1 )+(ln 2)(λ∗1−λ∗2) = 0

then we conclude that λ∗2 > 0 which by using the complementary slackness
condition results in I∗1 = 0 or P ∗

2 = 0. So finally we have P ∗
1 = P .

Case 2: If h2β1 < h0α1 then we have α1 > β1 or equivalently Ĩ1 < 0. This
means F1(x) < 0 for x ≥ 0. Because, we should have F1(I

∗
1 )+(ln 2)(λ∗1−λ∗2) = 0

then we conclude that λ∗1 > 0 which by using the complementary slackness
condition results in I∗1 = P or P ∗

2 = P .
Case 3: If α1 > β1 and h2β1 > h0α1 then we have Ĩ1 > 0. This means
that F1(x) > 0 for x > Ĩ1 and F1(x) < 0 for x < Ĩ1. Then as argued in
the previous cases it can be easily shown that the optimal power allocation is
P ∗
2 = I∗1 = min(Ĩ1, P ).

7.C Generalized Linear Fractional Programming (GLFP)

In this section, we state the fundamental definitions and results that are
the foundation of numerical algorithms introduced in [95] to solve Generalized
Linear Fractional Programs (GLFP) which is defined precisely in Definition 7.4
(see also [96] for the special application to wireless power control problems).
It is worth mentioning that GLFPs are in general non-convex optimization
problems.

With a proper change of variables, the power optimization problem derived
in Section 7.7.2 can be converted to a GLFP. This enables us to find numerically
the optimal power allocation for the problem of group secret key sharing over
a Gaussian broadcast channel introduced in Chapter 7.

Let us start with the following definition.

Definition 7.4 ([95]). We say that an optimization problem belongs to the class
of Generalized Linear Fractional Programming (GLFP), if it can be represented
by {

max Φ
(

f1(x)
g1(x)

, . . . , fm(x)
gm(x)

)

subject to x ∈ D,
(7.107)

or {
min Φ

(
f1(x)
g1(x)

, . . . , fm(x)
gm(x)

)

subject to x ∈ D,
(7.108)
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where D is a nonempty polytope in Rn, and functions f1, . . . , fm and g1, . . . , gm
are linear affine functions on Rn such that

−∞ < ai , min
x∈D

fi(x)

gi(x)
<∞. (7.109)

Moreover, Φ : Rm 7→ R is a continuous function, increasing on Rm
a+ , {y ∈

Rm|yi ≥ ai, i ∈ [1 : m]}, i.e., satisfying

a � y′ � y ⇒ Φ(y′) � Φ(y). (7.110)

Since the problem derived in Section 7.7 is of the form (7.107), from here
on we only focus on the maximization problem, namely, (7.107). As discussed
in [95, Section 3], by simple manipulation we can always reduce the problem
(7.107) to the case where we have

min{gi(x), fi(x)} > 0 ∀x ∈ D, i = [1 : m]. (7.111)

Also without loss of generality we may assume that Φ : Rm
+ → R++.

Under this assumption it is possible to reformulate problem (7.107) as a
monotonic optimization problem. Let us define

G ,

{
y ∈ Rm

+ | yi ≤
fi(x)

gi(x)
∀i = [1 : m], x ∈ D

}
. (7.112)

Then it is possible to state the following result.

Theorem 7.13. The optimization problem stated in 7.107 is equivalent to the
following problem {

max Φ (y)
subject to y ∈ G. (7.113)

More precisely, if x∗ solves (7.107) then y∗ with y∗i = fi(x
∗)

gi(x∗) solves (7.113).

Conversely, if y∗ solves (7.113) and x∗ ∈ D satisfies y∗i ≤ fi(x
∗)

gi(x∗) , then x∗

solves (7.107).

Normal Set and Polyblock

Here we review some definitions from [95]. If z ∈ Rm
+ , the hyperrectangle

[0, z] , {y ∈ Rm
+ |0 � y � z} is called a box. Given any finite set T ⊂ Rm

+ the
union of all the boxes [0, z], z ∈ T , is called a polyblock with vertex set T . A
vertex z ∈ T is said to be proper if z is not dominated by any other vertex,
i.e., if there is no z′ ∈ T such that z′ 6= z and z′ � z. Obviously a polyblock
is fully determined by its proper vertices.

A set H ⊂ Rm
+ is called normal if y ∈ H always implies that [0,y] ⊂ H. A

polyblock, in particular a box, is normal. The orthant Rm
+ and the empty set

are also normal sets. The intersection of any family of normal sets is obviously
a normal set. The intersection of finitely many polyblocks is a polyblock. If
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D ⊂ Rn and w : D → Rm
+ is any nonnegative-valued function on D then the

set H = {y ∈ Rm
+ | y � w(x), x ∈ D} is normal.

A point y ∈ Rm
+ is called an upper boundary point of a nonempty normal set

H ⊂ Rm
+ if αy ∈ H, ∀α < 1 but αy /∈ H, ∀α > 1. The set of upper boundary

points of H is called the upper boundary of H and is denoted by ∂+H. Then
[95, Proposition 2] states the following result:

Proposition 7.1. Let Φ(y) : Rm
+ → R be an increasing function. The maxi-

mum of Φ(y) over a polyblock is attained at one proper vertex of this polyblock.
The maximum of Φ(y) over a nonempty compact normal set H is attained on
∂+H.

It can be easily observed that the set G defined in (7.112) is normal so the
maximum value of the problem (7.113) is attained on the upper boundary of
G. To find the optimal value of this problem we can use [95, Algorithm 1].
The core idea of this algorithm is based on approximating ∂+G by a polyblock
in every iteration of the algorithm and then improving this approximation in
each iteration until finding a good estimate of the global optimum value of the
problem (7.113). It is shown in [95, Theorem] that by tolerating a non-zero
error value in the solution, the proposed algorithm converges in finite time to
an estimation of the global optimum value.

7.D Rewriting the Power Allocation Problem as a GLFP

For convenience, let us rewrite the power allocation optimization problem
(7.81) in the following

Rs =





max
∑s

i=1 ∆iRi

subject to Ik ≤ Ik−1, ∀k ∈ [1 : s],
(7.114)

where I0 = P , Is = 0, and we have

Ri = log

(
1 + h2i Ii−1

1 + h2i Ii
· 1 + h2i−1Ii

1 + h2i−1Ii−1

)
. (7.115)

Note that we can write

s∑

i=1

∆iRi = log

[
s∏

i=1

(
1 + h2i Ii−1

1 + h2i Ii

)∆i
(

1 + h2i−1Ii

1 + h2i−1Ii−1

)∆i
]
. (7.116)

Now by defining

Φ(y1, . . . , y2s) = log

[
s∏

i=1

y∆i

2i−1 · y∆i

2i

]
, (7.117)
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which is an increasing function in y, and by defining

y2i−1 =
1 + h2i Ii−1

1 + h2i Ii
, i ∈ [1 : s], (7.118)

and

y2i =
1 + h2i−1Ii

1 + h2i−1Ii−1
, i ∈ [1 : s], (7.119)

it can be easily observed that (7.114) is a GLFP of the form (7.107). So the nu-
merical methods developed in [95, 96] can be used to solve the power allocation
problem (7.114).





“Myth is the hidden part of every

story, the buried part, the region
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nourished by silence as well as by
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- Italo Calvino

Group Secret Key Agreement in

a Linear Non-coherent

Packetized Networks 8
For communication over a network performing linear NC, Cai and Yeung

[98] introduced the problem of securing a multicast transmission against an
eavesdropper. In particular, consider a network implementing linear NC over
a finite field Fq. Let us assume that the min-cut value from the source to
each receiver is c. From the main theorem of NC (see Theorem 2.1) [6, 5], we
know that a source can send information at rate equal to the min-cut c to
the destinations, in the absence of any malicious eavesdropper. Now, suppose
there is a passive eavesdropper, Eve, who overhears ρ arbitrary edges in the
network. The secure NC problem is to design a coding scheme such that Eve
does not obtain any information about the messages transmitted from the
source to destinations. Cai and Yeung [98] showed that the secrecy capacity for
this problem is c− ρ and can be achieved if the field size q is sufficiently large.
Later this problem formulation has been investigated in many other works.
Feldman et al. [99] showed that by sacrificing a small amount of rate, one
might find a secure scheme that requires much smaller field size. Rouayheb et
al. [100] observed that this problem can be considered as a generalization of
the Ozarow-Wyner wiretap channel of type II. Silva et al. [73] proposed a
universal coding scheme that only employs encoding at the source.

In contrast to the previous work, in this chapter we study the problem of
secret key sharing among multiple terminals when nodes can send feedback
over a public channel. We consider a source multicasting information over a
network at rate equal to the min-cut c to the destinations. We also assume
that the relay nodes in the network perform randomized linear NC which is
modeled by a non-coherent transmission scheme. Motivated by [33, 26], we
model a non-coherent NC scenario by a multiplicative matrix channel over a
finite field Fq with uniform and i.i.d. distribution over transfer matrices in every
time-slot.

179
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The problem of key agreement between a set of terminals with access to
noisy broadcast channel and public discussion channel (visible to the eavesdrop-
per) was studied in [85], where some achievable secrecy rates were established,
assuming Eve does not have access to the noisy broadcast transmissions. This
was generalized in [92, 86] by developing (non-computable) outer bounds for se-
crecy rates. However, to the best of our knowledge, ours is the first work to con-
sider multi-terminal secret key agreement over networks employing randomized
NC, when a passive eavesdropper has access to the broadcast transmissions.

Our contributions in this chapter are as follows. For the secret key shar-
ing problem introduced above, we propose an asymptotic achievability scheme
assuming that the field size q is large. This scheme is based on subspace cod-
ing and can be extended for arbitrary number of terminals. Using the result
of [85], we derive an upper bound for this problem. For m = 1, the proposed
lower bound matches the upper bound and the secret key generation capacity
is characterized. However, for m ≥ 2, depending on the channel parameters,
the upper and lower bound might match or not.

8.1 Problem Statement

We consider a set of m + 1 ≥ 2 honest nodes, T0, . . . ,Tm, (T stands for
“terminal”) that aim to share a secret key K among themselves while keeping
it concealed from a passive adversary, Eve. Eve does not perform any transmis-
sions, but is trying to eavesdrop on (overhear) the communications between the
honest nodes. For convenience, sometimes we will refer to node T0,T1,T2, . . . ,
as “Alice,” “Bob,” “Calvin,” and so on.

We assume that there exists a non-coherent NC broadcast channel (which
is going to be defined more precisely in the following) from Alice to the other
terminals (including Eve). Also we assume that the legitimate terminals can
publicly discuss over a noiseless rate unlimited public channel.

Consider a non-coherent linear NC communication scenario where at every
time-slot tAlice injects a set of nA vectors (packets) of length L (over some finite
field Fq) into the network, denoted by the row vectors of the matrix XA[t] ∈
FnA×L
q . Each terminal Ti receives ni randomly chosen linear combinations of

the transmitted vectors, namely for r ∈ {T1, . . . ,Tm,E}, we have 1

Xr[t] = F r[t]XA[t], (8.1)

where F r[t] ∈ Fnr×nA
q is chosen uniformly at random among all possible matri-

ces and independently for each receiver and every time-slot. So for the channel
transition probability we can write

PX1···XmXE|XA
(x1, . . . ,xm,xE|xA) = PXE|XA

(xE|xA)
m∏

i=1

PXi|XA
(xi|xA),

(8.2)

1. During the chapter, we use Ti and i interchangeably when they are used as subscript.
So instead of XTi

we sometimes write Xi . At some points, we also use XA, XB, XC, etc.,
to denote for X0, X1, X2, etc.
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where for each r ∈ {T1, . . . ,Tm,E} we have (see Section 3.3.1)

PXr|XA
(xr|xA) ,





q−n dim(xA) if 〈xr〉 ⊑ 〈xA〉 ,

0 otherwise.
(8.3)

Note that in this setup we do not assume any CSI 2 at the transmitter or
receivers.

Here, we define the secret key sharing capacity in the same way that we
have defined it in Chapter 7. So we do not repeat Definitions 7.1 and 7.2 again.

8.2 Main Results

In this section, we state the main result of this chapter which is upper
and lower bounds on the secret key sharing capacity Cnon−coh

s among multiple
terminals having access to a non-coherent NC channel as defined in Section 8.1.
This result is stated in the following theorem.

Theorem 8.1. The secret key generation capacity among m+1 terminals, as
defined in Section 7.2, that have access to a non-coherent multicast NC channel
defined in Section 8.1, is upper bounded by

Cnon−coh
s ≤

min
i∈[1:m]

[(
min[nA, ni + nE]− nE

)(
L−min[nA, ni + nE]

)]
log q. (8.4)

Moreover, there exists an efficient achievability scheme that can achieve the
secrecy rates less than the solution to the following convex optimization problem

maximize
[
minr∈[1:m]

∑
J∋r θJ

]
(L− nA) log q

subject to θJ ≥ 0, ∀J ⊆ [1 : m], J 6= ∅, and
θJ1 + · · ·+ θJk

≤
dim (UJ1 + · · ·+ UJk

+ΠE)− dim(ΠE)
∀k, ∀J1, . . . ,Jk : ∅ 6= Ji ⊆ [1 : m],
Ji 6= Jj if i 6= j,

(8.5)

where for every J , UJ is chosen uniformly at random from ΠJ with the di-
mension calculated by (8.15) under the assumption that Π1, . . . ,Πm, and ΠE

are selected independently and uniformly at random from ΠA with dimensions
n1, . . . , nm, and nE respectively.

The stated upper bound is proved in Section 8.3. The proof of the lower
bound can also be found in Section 8.4.

2. Channel state information.
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8.3 Upper Bound for Non-coherent NC Channel

In Section 7.4, we have shown that the secret key generation rate among
multiple terminals having access to the output of an independent broadcast
channel can be upper bounded by (7.26), i.e.,

Cs ≤ min
j∈[1:m]

max
PXA

I(XA;Xj |XE). (8.6)

Now, we need to evaluate the above upper bound for the non-coherent NC
channel defined in Section 8.1. To this end we proceed as follows. First, we
state the following lemma.

Lemma 8.1. For the joint distribution of the form

PXAXiXE
(xA,xi,xE) = PXA

(xA)PXi|XA
(xi|xA)PXE|XA

(xE|xA) (8.7)

the mutual information I(XA;Xi|XE) is a concave function of PXA
(xA) for

fixed PXi|XA
(xi|xA) and PXE|XA

(xE|xA).

Proof. For the proof refer to Appendix 8.B.

Similar to Definition 3.2, here we define an equivalent subspace broadcast
channel from Alice to the rest of terminals as follows. We assume that Alice
sends a subspace ΠA ∈ Sp(L, nA) where ΠA = 〈XA〉 and each of the legitimate
terminals receives Πi ∈ Sp(L, ni) and Eve receives ΠE ∈ Sp(L, nE) where Πi =
〈Xi〉 and ΠE = 〈XE〉, respectively. Recall that the set Sp(L, k) is defined in
Definition 2.3. The channel transition probabilities are independent and for
each receiver i is defined as follows

PΠi|ΠA
(πi|πA) ,





ψ(ni, dim(πi))q
−ni dim(πA) if πi ⊑ πA,

0 otherwise,
(8.8)

where function ψ is defined in Definition 2.4 (see also Lemma 2.5 and Re-
mark 2.1).

Lemma 8.2. For every input distribution PXA
there exists an input distribu-

tion PΠA
such that I(XA;Xi|XE) = I(ΠA; Πi|ΠE) and vice-versa.

Proof. We can expand I(XA;Xi|XE) = I(XA;XiXE) − I(XA;XE). Using
Theorem 3.1, by defining ΠA = 〈XA〉 and Πr = 〈Xr〉 for r ∈ {T1, . . . ,Tm,TE},
we can write

I(XA;Xi|XE) = I(XA;Xi,XE)− I(XA;XE)

(a)
= I(ΠA; Πi +ΠE)− I(ΠA; ΠE)

(b)

≤ I(ΠA; Πi,ΠE)− I(ΠA; ΠE)

= I(ΠA; Πi|ΠE) (8.9)
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where (a) follows from Theorem 3.1 and (b) is true because of the data pro-
cessing inequality applied on the Markov chain Πi +ΠE ↔ (Πi,ΠE)↔ ΠA. On
the other hand, by applying data processing inequality for another time, we
can write

I(XA;Xi|XE) = I(XA;Xi,XE)− I(XA;XE)

(a)

≥ I(ΠA; Πi,ΠE)− I(XA;XE)

(b)
= I(ΠA; Πi,ΠE)− I(ΠA; ΠE)

= I(ΠA; Πi|ΠE) (8.10)

where (a) is true because of the Markov chain (Πi,ΠE)↔ (Xi,XE)↔ XA ↔
ΠA and (b) is true because of Theorem 3.1. Hence we are done.

So by Lemma 8.2, in order to maximize I(XA;Xi|XE) with respect to PXA

it is sufficient to solve an equivalent problem, i.e., maximize I(ΠA; Πi|ΠE) with
respect to PΠA

; which is seemingly a simpler optimization problem than the
original one.

Lemma 8.3. The input distribution that maximizes I(ΠA; Πi|ΠE) is the one
which is uniform over all subspaces having the same dimension.

Proof. By the concavity of I(ΠA; Πi|ΠE) with respect to PΠA
, which is stated

in Lemma 8.1, the proof follows by an argument very similar to the proof of
Lemma 3.4 (see Appendix 3.A).

Lemma 8.4. Asymptotically in the field size we have

max
PXA

I(XA;Xi|XE) = max
PΠA

I(ΠA; Πi|ΠE)

=
(
min[nA, ni + nE]− nE

)(
L−min[nA, ni + nE]

)
log q.
(8.11)

Proof. For the proof refer to Appendix 8.B.

Thus, by using the upper bound given in (7.26) and Lemma 8.4 we have
the following result for the upper bound on the secret key generation rate, as
stated in Theorem 8.2.

Theorem 8.2. The secret key generation rate in a non-coherent NC scenario,
which is defined in Section 8.1, is upper bounded by

Cnon−coh
s ≤

min
i∈[1:m]

[(
min[nA, ni + nE]− nE

)(
L−min[nA, ni + nE]

)]
log q. (8.12)

Remark 8.1. Note that if nE = nA then the secret key generation rate is zero
because Eve is so powerful that she overhears all of the transmitted information.
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8.4 Asymptotic Achievability Scheme

Here in this section, we describe our achievability scheme for the secret key
sharing problem among multiple terminals in a non-coherent NC setup.

Without loss of generality, let us assume that 3 nA < L. Moreover, here we
only focus an the asymptotic regime where the field size is large. Suppose that
Alice broadcasts a message XA[t] at time-slot t of the following form

XA[t] =
[
InA×nA

M [t]
]
, (8.13)

where M [t] ∈ FnA×(L−nA)
q is a uniformly at random distributed matrix. The

rest of legitimate terminals and Eve receive a linear transformed version of
XA[t] according to the channel introduced in (8.1).

For each terminal r ∈ {T0, . . . ,Tm,TE}, we define the subspace Πr , 〈Xr〉.
Then, for every r 6= T0 we have Πr ⊑ ΠA. Because of (8.13), after broadcasting
XA[t], the legitimate terminals learn the channel state and reveal the channel
transfer matrices F r[t], r ∈ [1 : m], publicly over the public channel. Thus
Alice can also recover the subspaces Πr for all of the legitimate terminals.

Now, for each non-empty subset J ⊆ [1 : m] of legitimate receivers, let us
define the subspace UJ as follows

UJ , ΠJ \s
(
∑

i∈J c

ΠiJ +ΠEJ

)
, (8.14)

where ΠJ = ∩j∈JΠj , ΠiJ = Πi ∩ΠJ , and ΠEJ = ΠE ∩ΠJ . By definition, UJ

is the common subspace among the receivers in J which is orthogonal to all
of the subspaces of other terminals, i.e., it is orthogonal to Πi, i ∈ J c, and ΠE

(see also Figure 8.1). Note that the subspaces UJ ’s are not uniquely defined.
However, from the definition of the operator “\s”, it can be easily shown that
the dimension of each UJ is uniquely determined and equal to

dim(UJ ) = dim(ΠJ )− dim

(
∑

i∈J c

ΠiJ +ΠEJ

)
. (8.15)

If Alice had the subspace ΠE observed by Eve, she would be able to construct
subspaces UJ ’s; but she does not have ΠE. However, because the subspaces
Πi’s and ΠE are chosen independently and uniformly at random from ΠA,
and because the field size q is large, Alice, by applying Lemma 2.11, can find
the dimension of each UJ w.h.p. Then, by applying Lemma 2.10, it can be
easily observed that if Alice chooses a uniformly at random subspace of ΠJ

with dimension dim(UJ ) then it satisfies (8.14) w.h.p., so it can be a possible
candidate for UJ .

3. If L ≤ nA then Alice can reduce the number of injected packets into the network from
nA to some smaller number n′

A
where n′

A
< L.
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Now, consider 2m− 1 different non-empty subsets of [1 : m]. To each subset
∅ 6= J ⊆ [1 : m], we assign a parameter θJ ≥ 0 such that the following set of
inequalities hold,

θJ1 + · · ·+ θJk
≤ dim (UJ1 + · · ·+ UJk

+ΠE)− dim(ΠE), (8.16)

for any k ∈ [1 : 2m − 1] and any different selection of subsets J1, . . . ,Jk. Note
that the right hand side of the inequalities defined in (8.16) depend on the
actual choice of subspaces UJ ’s. But, as described above, in the following we
assume that UJ ’s are chosen uniformly at random from ΠJ .

If Alice knows the subspace ΠE, then we can state the following result.

Lemma 8.5. There exists subspaces U ′
J ⊑ UJ such that dim(U ′

J ) = θJ for
all ∅ 6= J ⊆ [1 : m], and U ′

J ’s and ΠE are orthogonal subspaces (i.e., dim(ΠE+∑
i U

′
Ji
) = dim(ΠE)+

∑
i θJi

) if and only if θJ ’s are non-negative integers and
satisfy (8.16).

Proof. The proof of this lemma is based on [101, Lemma 4] and can be found
in Appendix 8.B.

Figure 8.1 depicts pictorially the relation between subspaces introduced in
the above discussions.

Figure 8.1 – The relations between subspaces Π’s, U ’s, and U ′’s for the case of
m = 2.

Although in practice Alice only knows the dimension of ΠE (w.h.p.), but
still she can find subspaces U ′

J ⊑ UJ such that the result of Lemma 8.5 holds
w.h.p., as stated in Lemma 8.6.

Lemma 8.6. Alice can find subspaces U ′
J ⊑ UJ such that dim(U ′

J ) = θJ for
all ∅ 6= J ⊆ [1 : m], and U ′

J ’s are orthogonal subspaces and U ′
J ’s and ΠE are

orthogonal subspaces w.h.p., if and only if θJ ’s are non-negative integers and
satisfy (8.16).

Proof. For the proof refer to Appendix 8.B.

Then, we have the following result.
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Theorem 8.3. The secret key sharing rate given by the solution of the following
convex optimization problem can be achieved

maximize
[
minr∈[1:m]

∑
J∋r θJ

]
(L− nA) log q

subject to θJ ≥ 0, ∀J ⊆ [1 : m], J 6= ∅, and
θJ1 + · · ·+ θJk

≤
dim (UJ1 + · · ·+ UJk

+ΠE)− dim(ΠE)
∀k, ∀J1, . . . ,Jk : ∅ 6= Ji ⊆ [1 : m],
Ji 6= Jj if i 6= j,

(8.17)

where for every J , UJ is chosen uniformly at random from ΠJ with the di-
mension calculated by (8.15) under the assumption that Π1, . . . ,Πm, and ΠE

are selected independently and uniformly at random from ΠA with dimensions
n1, . . . , nm, and nE respectively.

Proof. Let Alice use the broadcast channel N times by sending matrices

XA[1], . . . ,XA[N ], (8.18)

of the form (8.13). As mentioned before, in every time-slot t, each of the legit-
imate terminals sends publicly the channel transfer matrix it has received.

Then, let us define θ̂J , ⌊NθJ ⌋ for all J and consider the following set of
inequalities

θ̂J1 + · · ·+ θ̂Jk
+N dim(ΠE) ≤

dim

(
N⊕

t=1

UJ1 [t] + · · ·+
N⊕

t=1

UJk
[t] +

N⊕

t=1

ΠE[t]

)
, (8.19)

where “⊕” is the direct sum operator. Each of ÛJi
,
⊕N

t=1 UJi
[t] is a subspace

of anN×nA dimensional space
⊕N

t=1 ΠA[t]. Similarly, we have Π̂E ⊑
⊕N

t=1 ΠA[t]

where Π̂E ,
⊕N

t=1 ΠE[t]. It can be easily seen that if the set of inequalities (8.16)
are satisfied then the set of inequalities (8.19) are also satisfied.

Now, by using Lemma 8.6, Alice can find a set of orthogonal subspaces
Û ′
J with dimension θ̂J (that are also orthogonal to Π̂E w.h.p.). By applying

Lemma 8.7, one would observe that if Alice uses a basis of Û ′
J (θ̂J linear

independent vectors from Û ′
J ) to share a secret key KJ with all terminals in

J , then this key is secure from Eve and all other legitimate terminals in J c

w.h.p.Using each key KJ , Alice can send a message of size θ̂J (L − nA) log q
secretly to the terminals in J . In order to share the key KJ , Alice sends
publicly a set of coefficients for each terminal in J so that each of them can
construct the subspace ÛJ from their own received subspace. Note that even
having these coefficients, Eve cannot recover any information regarding KJ

(for more discussion see proof of Theorem 7.7 in Chapter 7).
Up until now, the problem of sharing a key K among legitimate terminals

have been reduced to a multicast problem where Alice would like to transmit
a message (i.e., the shared key K) to a set of terminal where the rth one has a
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min-cut
∑

J∋r θ̂J . From the main theorem of NC (e.g., see [6, 5, 7, 8]), we know
that this problem can be solved by performing linear NC where the achievable
rate is as follows

Rnon−coh
s ≤

[
1

N
min

r∈[1:m]

∑

J∋r

θ̂J

]
(L − nA) log q. (8.20)

By increasing N , the achievable secrecy rate will be arbitrarily close to

Rnon−coh
s ≤

[
min

r∈[1:m]

∑

J∋r

θJ

]
(L− nA) log q, (8.21)

and we are done.

Lemma 8.7. Consider a set of nA packets denoted by the rows of a matrix

XA ∈ FnA×L
q of the form XA = [I M ], where M ∼ Uni

(
FnA×(L−nA)
q

)
.

Assume that Eve has overheard nE independent linear combinations of these
packets, represented by the rows of a matrix XE ∈ FnE×L

q . Then for every
k packets y1, . . . ,yk that are linear combinations of the rows of XA, if the
subspace ΠY = 〈y1, . . . ,yk〉 is orthogonal to 〈XE〉 we have

I(y1, . . . ,yk;XE) = 0. (8.22)

Proof. The proof is stated in Appendix 8.B.

8.4.1 Special Case: Achievability Scheme for Two Terminals

For simplicity and without loss of generality we assume that nB ≤ nA and
nE ≤ nA. The key generation scheme starts by Alice broadcasting a message
XA[t] at time t of the form of (8.13). Then, Theorem 8.3 states that the secrecy
rate Rnon−coh

s is achievable if 4

Rnon−coh
s ≤

[
dim(UB +ΠE)− dim(ΠE)

]
(L − nA) log q, (8.23)

where UB = ΠB \s ΠE. Because UB ∩ΠE = {0}, we have

Rnon−coh
s ≤

[
dim(UB)

]
(L− nA) log q

=
[
dim(ΠB)− dim(ΠB ∩ ΠE)

]
(L− nA) log q

=
[
nB − (nB + nE − nA)

+
]
(L− nA) log q

=
[
min[nA, nB + nE]− nE

]
(L− nA) log q, bits/channel use,

(8.24)

where this is the same as the upper bound given in Theorem 8.2. This is obvious
when nA ≤ nB + nE. On the other hand, for the case where nA > nB + nE, we
can reduce the number of injected packets by Alice in every time-slot from nA

to nB + nE (there is no need to use more than nB + nE degrees of freedom).

4. For the convenience of notation, we have replaced U{B} with UB.
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Remark 8.2. Note that in the above scheme, as long as nE < nA, the secrecy
rate is non-zero.

Now, we compare the derived secrecy rate with the case where no feedback
is allowed. First let us assume that nB ≥ nE. Then, in the non-coherent NC
scenario introduced in Section 8.1, it can be easily verified that the channel
from Alice to Eve is a stochastically degraded (for the definition refer to [102,
p. 373]) version of the channel from Alice to Bob.

So by applying the result of [91] or [103, Theorem 3], for the secret key
sharing capacity we can write

Cs = max
PXA

[I(XA;XB)− I(XA;XE)]

= max
PΠA

[I(ΠA; ΠB)− I(ΠA; ΠE)] , (8.25)

where the sufficiency of optimization over subspaces follows from Theorem 3.1.
Similar to the proof of Lemma 8.4 (because in the proof of Lemma 8.4, we also
maximize an expression that contains subtraction of two mutual information
similar to (8.25)), one can show that

Cs = [nB − nE](L− nB) log q, (8.26)

which is positive only if nB > nE (obviously for the case nB < nE we have
Cs = 0 as well, because even for a weaker eavesdropper, when nB = nE, we
have Cs = 0).

The above comparison demonstrates the amount of improvement of the
secret key generation rate we might gain by using feedback.

8.4.2 Special Case: Achievability Scheme for Three Terminals

As an another example, here we consider the three trusted terminals prob-
lem (i.e., m = 2). As before, we assume that nA < L and for the convenience
we consider the case where nB = nC ≤ nA and nE ≤ nA.

In order to characterize the achievable secrecy rate, we need to find the
dimension of subspaces UB, UC, and UBC and their sums (including ΠE). We
assume that the field size q is large. We know that ΠB, ΠC, and ΠE are chosen
uniformly at random from nA-dimensional space ΠA. Subspaces ΠBC and ΠBE

are also distributed independently and uniformly at random in ΠB. Similarly,
the same is true for ΠBC and ΠCE in ΠC.

From (8.14), we have





UB = ΠB \s (ΠBC +ΠBE)
UC = ΠC \s (ΠBC +ΠCE)
UBC = ΠBC \s (ΠBCE),

(8.27)
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so we can write

dim(UB) = dim(ΠB)− dim(ΠBC +ΠBE)

(a)
= dim(ΠB)−min

[
dim(ΠBC) + dim(ΠBE), dim(ΠB)

]

(b)
= nB −min

[
dim(ΠBC) + dim(ΠBE), nB

]

=
[
nB − dim(ΠBC)− dim(ΠBE)

]+

(c)
=
[
nB − (2nB − nA)

+ − (nB + nE − nA)
+
]+
, (8.28)

where (a) follows from Lemma 2.11 because ΠBC and ΠBE are chosen indepen-
dently and uniformly at random from ΠB, (b) is true because q is large, and
(c) follows from Lemma 2.11. Note that because we have assumed nB = nC it
follows that dim(UC) = dim(UB).

Similarly, for the dimension of UBC we can write

dim(UBC) = dim(ΠBC)− dim(ΠBCE)

= dim(ΠBC)−
[
dim(ΠBC) + nE − nA

]+

= min
[
nA − nE, dim(ΠBC)

]

= min
[
nA − nE, (2nB − nA)

+
]
. (8.29)

Proposition 8.1. From the construction, the subspaces UB, UC, and UBC are
orthogonal. The same holds for UB, UBC, and ΠE and similarly for UC, UBC,
and ΠE w.h.p.

Now we may write the optimization problem stated in Theorem 8.3 as
follows

maximize min
[
θB + θBC, θC + θBC

]
(L− nA) log q

subject to θB ≤ dim(UB +ΠE)− nE

θC ≤ dim(UC +ΠE)− nE

θBC ≤ dim(UBC +ΠE)− nE

θB + θC ≤ dim(UB + UC +ΠE)− nE

θB + θC + θBC ≤ dim(UB + UC + UBC +ΠE)− nE.

(8.30)

Because of the symmetry in the problem (nB = nC), for the optimal solution we
should have θB = θC. Knowing this and using Proposition 8.1, we may further
simplify the above linear program as follows

maximize [θB + θBC] (L − nA) log q

subject to θB ≤ 1
2

[
dim(UB + UC +ΠE)− nE

]
, α1

θBC ≤ dim(UBC) , α2

2θB + θBC ≤ dim(UB + UC + UBC + ΠE)− nE , α3.

(8.31)

From the definitions of α’s, we can easily observe that, α3 ≥ 2α1, α3 ≥ α2,
and α3 ≤ 2α1+α2. Hence, θB + θBC gets its maximum at the point (θB, θBC) =
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(α3−α2

2 , α2). Thus, for the maximum achievable secrecy rate we have

Rnon−coh
s =

[
α2 + α3

2

]
(L− nA) log q. (8.32)

As mentioned before, we assume that subspaces UJ ’s are chosen uniformly
at random from ΠJ . So ΠE and UJ ’s are independent and for α3, w.h.p., we
can write

α3 = min
[
dim(UB) + dim(UC) + dim(UBC) + dim(ΠE), nA

]
− nE

= min
[
dim(UB) + dim(UC) + dim(UBC), nA − nE

]

= min
[
2 dim(UB) + dim(UBC), nA − nE

]
. (8.33)

Finally, for the secrecy rate (achievable asymptotically when q goes to infinity)
we have

Rnon−coh
s = min

[
dim(UB) + dim(UBC),

1

2
(nA + dim(UBC)− nE)

]
(L − nA) log q.

(8.34)

Example 8.1. As an example, here we compare the achievable secret key shar-
ing rate among three legitimate terminals (i.e., m = 2) as derived in (8.34) with
the upper bound stated in Theorem 8.2. We consider two symmetric setup where
for the first one we have nA = 60, nB = nC = 15 (see Figure 8.2a) and for the
second one we have nA = 60, nB = nC = 45 (see Figure 8.2b). In each of these
situations, we depict the upper and lower bounds on the secret key generation
rate as a function of the number of packets (degrees of freedom) received by
Eve, i.e., nE.

8.5 Concluding Remarks

In this chapter, we have considered the problem of sharing a secret key
among multiple terminals in the presence of a passive eavesdropper. The trusted
nodes have access to a non-coherent multicast NC channel and also are able to
discuss over a public channel which is overheard by every nodes.

For this setup, we have derived upper and lower bounds for the secrecy
capacity. The proposed achievability scheme is based on subspace coding and
it works for arbitrary number of terminals. However, it should be mentioned
that this result holds asymptotically in the field size.
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(a) m = 2, nA = 60, and nB = nC = 15.
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(b) m = 2, nA = 60, and nB = nC = 45.

Figure 8.2 – A comparison between the achievable secrecy rate of Theorem 8.3
and the upper bound given by Theorem 8.2 for two cases: (a) when m = 2,
nA = 60, and nB = nC = 15 and (b) when m = 2, nA = 60, and nB = nC = 45.

8.A Simplifying the Mutual Information for a Non-coherent
NC Channel

Let us consider a non-coherent NC channel described by the following ma-
trix channel

Y [t] = F [t]X[t], (8.35)

where X[t] ∈ Fnx×L
q , Y [t] ∈ Fny×L

q , and F [t] ∈ Fny×nx
q is an uniformly at

random chosen transfer matrix which is independently chosen for every time-
slot t. For simplicity we assume that L ≥ max[nx, ny].

As stated in Theorem 3.1, in order to find the capacity of (8.35) we can
instead focus on an equivalent subspace channel described by a transition prob-
ability as follows

PΠY |ΠX
(πy |πx) ,





ψ(ny, dim(πy))q
−ny dim(πx) if πy ⊑ πx,

0 otherwise.
(8.36)

In this work we focus on large q regime, so we can approximate the above
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transition probability as follows

PΠY |ΠX
(πy|πx) = 1{dimπx≤ny}1{πy=πx}

+
1{dimπx>ny}1{dimπy=ny}1{πy⊑πx}[

dimπx

ny

] . (8.37)

From here on we assume that the input distribution is uniform over all
subspaces having the same dimension, namely

P [ΠX = πx] = αdx

[
L

dx

]−1

, (8.38)

where dx = dimπx and αdx
= P [dimΠX = dx].

Then, for PΠY
we can write

PΠY
(πy) =

∑

πx

PΠY |ΠX
(πy|πx)PΠX

(πx)

=
∑

πx:
dimπx≤min[nx,ny ]

1{πy=πx}PΠX
(πx)

+
∑

πx:
ny<dimπx≤nx

1{dimπy=ny}1{πy⊑πx}[
dimπx

ny

] PΠX
(πx). (8.39)

So we have

PΠY
(πy) = PΠX

(πy)1{dimπy≤min[nx,ny ]} +

nx∑

dx=ny+1

∑

πx:
πy⊑πx,

dimπx=dx

1{dimπy=ny}[
dx

ny

] · αdx[
L
dx

]

= PΠX
(πy)1{dimπy≤min[nx,ny ]} +

nx∑

dx=ny+1

[
L− ny

dx − ny

]1{dimπy=ny}[
dx

ny

] · αdx[
L
dx

] .

(8.40)

Now, we use the following relation (see Lemma 2.2) to further simplify the
expression in front of the summation

[
L− ny

dx − ny

][
L

ny

]
=

[
dx
ny

][
L

dx

]
. (8.41)



8.A. Simplifying the Mutual Information for a Non-coherent NC Channel193

Then for PΠY
we have

PΠY
(πy) =

= PΠX
(πy)1{dimπy≤min[nx,ny ]} +

nx∑

dx=ny+1

1{dimπy=n}αdx

[
L

ny

]−1

= PΠX
(πy)1{dimπy≤min[nx,ny ]} + P [dimΠX > ny]1{dimπy=ny}

[
L

ny

]−1

= PΠX
(πy)1{dimπy≤min[nx,ny−1]} + P [dimΠX ≥ ny]1{dimπy=ny}

[
L

ny

]−1

.

(8.42)

Hence, by definition, for the mutual information I(ΠX ; ΠY ) we can write

I(ΠX ; ΠY ) =

nx∑

dx=0

∑

πx:
dimπx=dx

min[ny,dx]∑

dy=0

∑

πy :
dimπy=dy,

πy⊑πx

F (πx, πy) (8.43)

where

F (πx, πy) = PΠX
(πx)PΠY |ΠX

(πy |πx) log
PΠY |ΠX

(πy|πx)
PΠY

(πy)
. (8.44)

Then we have

I(ΠX ; ΠY ) =

min[nx,ny ]∑

dx=0

∑

πx:
dimπx=dx

dx∑

dy=0

∑

πy :
dimπy=dy,

πy⊑πx

αdx[
L
dx

]1{πy=πx} log
1{πy=πx}

PΠY
(πy)

,

+ 1{ny<nx}





nx∑

dx=ny+1

∑

πx:
dimπx=dx

ny∑

dy=0

∑

πy :
dimπy=dy,

πy⊑πx

F ′(dx, dy, πy)





(8.45)

where

F ′(dx, dy, πy) =
αdx[
L
dx

]
1{dx>ny}1{dy=ny}[

dx

ny

] log
1{dx>ny}1{dy=ny}

PΠY
(πy)

[
dx

ny

] . (8.46)



194
Group Secret Key Agreement in a Linear Non-coherent Packetized

Networks

This simplifies to

I(ΠX ; ΠY ) = −
min[nx,ny]∑

dx=0

∑

πx:
dimπx=dx

αdx[
L
dx

] logPΠY
(πx)

− 1{ny<nx}





nx∑

dx=ny+1

∑

πx:
dimπx=dx

αdx[
L
dx

] log
[
PΠY

(πy)

[
dx
ny

]]



,

(8.47)

where in the last line πy is an arbitrary subspace with dim πy = ny. So finally
we can write

I(ΠX ; ΠY ) = −
min[nx,ny ]∑

dx=0

αdx
log

αdx[
L
dx

]

− 1{ny<nx}





nx∑

dx=ny+1

αdx
log

[[dx

ny

]
[
L
ny

]P [dimΠX ≥ ny]

]
 . (8.48)

8.B Omitted Proofs

Proof of Lemma 8.1. Let us expand I(XA;XB|XE) as follows
5

I(XA;XB|XE) =
∑

xA,xB,xE

p(xA,xB,xE) log
p(xA,xB|xE)

p(xA|xE)p(xB|xE)

=
∑

xA,xB,xE

p(xA)p(xB,xE|xA) log
p(xB,xE|xA)

p(xE|xA)p(xB|xE)
. (8.49)

From here we will use the independence of the channels from Alice to Bob and
to Eve, p(xB,xE|xA) = p(xB|xA)p(xE|xA), so we have

I(XA;XB|XE) =
∑

xA,xB,xE

p(xA)p(xB,xE|xA) log
p(xB|xA)

p(xB|xE)

=
∑

xA,xB,xE

p(xA)p(xB,xE|xA) log

[
p(xB|xA)

p(xE)

p(xB,xE)

]

=−H(XB|XA) +
∑

xA,xB,xE

p(xA)p(xB,xE|xA) log
p(xE)

p(xB,xE)

=−H(XB|XA)−
∑

xB,xE

f
(
p(xA), p(xB|xA), p(xE|xA)

)
,

(8.50)

5. Note that without loss of generality, we have replaced Xi with XB.



8.B. Omitted Proofs 195

where

f
(
p(xA), p(xB|xA), p(xE|xA)

)
,

∑

xA

p(xA)p(xB,xE|xA) log

∑
x′′

A
p(xB,xE|x′′

A)p(x
′′
A)∑

x′
A
p(xE|x′

A)p(x
′
A)

. (8.51)

Suppose p1(xA) and p2(xA) are two arbitrary distributions over random
variable XA. Let us define pλ(xA) , λp1(xA)+(1−λ)p2(xA) where 0 ≤ λ ≤ 1.
Using the log-sum inequality (see [38], Theorem 2.7.1), we can write

f
(
pλ(xA), p(xB,xE|xA)

)
≤

λf
(
p1(xA), p(xB,xE|xA)

)
+ (1− λ)f

(
p2(xA), p(xB,xE|xA)

)
, (8.52)

which shows that f is a convex function in p(xA). we also know thatH(XB|XA)
is a linear function with respect to p(xA) so I(XA;XB|XE) is a concave func-
tion with respect to p(xA).

Proof of Lemma 8.4. By using Lemma 8.1 and Lemma 8.2, we conclude that
in order to maximize I(XA;Xi|XE) with respect to PXA

, it is sufficient to
maximize I(ΠA; Πi|ΠE) for and equivalent subspace channel introduced in (8.8).
Also Lemma 8.3 indicates that considering input distributions that are uniform
over all subspaces having the same dimension is sufficient.

Let us assume

P [ΠA = πA] = αd

[
L

d

]−1

, (8.53)

where d = dimπA and αd = P [dimΠA = d]. Now, define

f , I(ΠA; Πi|ΠE) = I(ΠA; Πi,ΠE)− I(ΠA; ΠE), (8.54)

and the goal is to maximize f with respect to αis.
We consider two cases as follows.

First case: ni + nE ≤ nA

Then, by applying the results of Appendix 8.A, specially (8.48), we can write

f = −
ni+nE∑

d=nE+1

αd log
αd[
L
d

] −
nA∑

d=ni+nE+1

αd log

[[
d

ni+nE

]
[

L
ni+nE

]P [dimΠA ≥ ni + nE]

]

+

nA∑

d=nE+1

αd log

[[
d
nE

]
[
L
nE

]P [dimΠA ≥ nE]

]
. (8.55)

Now we have to maximize f with respect to the input distribution, αi. We
know that the mutual information is a concave function with respect to αi’s.
This allows us to use the Kuhn-Tucker theorem to solve the convex optimization
problem. According to this theorem, the set of probabilities α∗

i , 0 ≤ i ≤ nA,
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maximize the mutual information if and only if there exists some constant λ
such that 




∂f
∂αk

∣∣∣
α∗

= λ ∀k : α∗
k > 0,

∂f
∂αk

∣∣∣
α∗
≤ λ ∀k : α∗

k = 0,

(8.56)

where 0 ≤ k ≤ nA,
∑nA

i=0 α
∗
i = 1, and α∗ is the vector of the optimum input

probabilities of choosing subspaces of certain dimension,

α∗ =
[
α∗
0 · · · α∗

nA

]T
. (8.57)

Taking the derivative for 0 ≤ k < nE we have

∂f

∂αk
= 0, (8.58)

for k = nE we have

∂f

∂αk
=

nA∑

d=nE+1

αd

[
log e

P [dimΠA ≥ nE]

]
=

P [dimΠA > nE]

P [dimΠA ≥ nE]
log e, (8.59)

for nE < k < ni + nE we have

∂f

∂αk
= − log

αk[
L
k

] − log e+ log

[[
k
nE

]
[
L
nE

]P [dimΠA ≥ nE]

]
+

P [dimΠA > nE]

P [dimΠA ≥ nE]
log e,

(8.60)

for k = ni + nE we have

∂f

∂αk
= − log

αk[
L
k

] − log e+ log

[[
k
nE

]
[
L
nE

]P [dimΠA ≥ nE]

]
+

P [dimΠA > nE]

P [dimΠA ≥ nE]
log e

− P [dimΠA > ni + nE]

P [dimΠA ≥ ni + nE]
log e, (8.61)

and finally for ni + nE < k ≤ nA we have

∂f

∂αk
= + log

[[
k
nE

]
[
L
nE

]P [dimΠA ≥ nE]

]
+

P [dimΠA > nE]

P [dimΠA ≥ nE]
log e

− log

[[
k

ni+nE

]
[

L
ni+nE

]P [dimΠA ≥ ni + nE]

]
− P [dimΠA > ni + nE]

P [dimΠA ≥ ni + nE]
log e.

(8.62)

We can easily check that for large q, the input distribution that has αni+nE
=

1 and αi = 0 for i 6= ni + nE satisfies the Kuhn-Tucker conditions. For this
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distribution, we have





0 ≤ k < nE : ∂f
∂αk

= 0 < λ,

k = nE : ∂f
∂αk

= log e < λ,

nE < k < ni + nE : ∂f
∂αk

= log
[
k
nE

][
L
nE

]−1
< λ,

k = ni + nE : ∂f
∂αk

= log
[

L
ni+nE

][
ni+nE

nE

][
L
nE

]−1
= λ,

ni + nE < k ≤ nA : ∂f
∂αk

= log e+ log
[
k
nE

][
L
nE

]−1

− log
[

k
ni+nE

][
L

ni+nE

]−1
< λ.

(8.63)

So we have

max
PΠA

I(ΠA; Πi|ΠE) = λ

= log

[
L

ni + nE

][
ni + nE

nE

][
L

nE

]−1

= log

[
L− nE

ni

]

≈ ni(L− ni − nE) log q. (8.64)

Second case: ni + nE > nA

For this case the function f becomes

f = −
nA∑

d=nE+1

αd log
αd[
L
d

] +
nA∑

d=nE+1

αd log

[[
d
nE

]
[
L
nE

]P [dimΠA ≥ nE]

]
. (8.65)

Similar to the previous case, we can apply the Kuhn-Tucker theorem to find
the optimal input distribution α∗

i ’s.
Taking derivative for 0 ≤ k < nE, we have

∂f

∂αk
= 0, (8.66)

for k = nE we have

∂f

∂αk
=

nA∑

d=nE+1

αd

[
log e

P [dimΠA ≥ nE]

]
=

P [dimΠA > nE]

P [dimΠA ≥ nE]
log e, (8.67)

and finally for nE < k ≤ nA we have

∂f

∂αk
= − log

αk[
L
k

] − log e+ log

[[
k
nE

]
[
L
nE

]P [dimΠA ≥ nE]

]

+
P [dimΠA > nE]

P [dimΠA ≥ nE]
log2 e. (8.68)
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We can easily check that for large q, the input distribution that has αnA
= 1

and αi = 0 for i 6= nA satisfies the Kuhn-Tucker conditions. For this distribu-
tion, we have





0 ≤ k < nE : ∂f
∂αk

= 0 < λ,

k = nE : ∂f
∂αk

= log e < λ,

nE < k < nA : ∂f
∂αk

= log
[
k
nE

][
L
nE

]−1
< λ,

k = nA : ∂f
∂αk

= log
[
L
nA

][
nA

nE

][
L
nE

]−1
= λ.

(8.69)

So for the second case, we have

max
PΠA

I(ΠA; Πi|ΠE) = λ

= log

[
L

nA

][
nA

nE

][
L

nE

]−1

= log

[
L− nE

nA − nE

]

≈ (nA − nE)(L− nA) log q. (8.70)

Combining the first and the second case we get the desired result, namely,

max
PΠA

I(ΠA; Πi|ΠE) =
(
min[nA, ni+nE]−nE

)(
L−min[nA, ni+nE]

)
log q. (8.71)

Proof of Lemma 8.5. Let us add UE , ΠE to 2m − 1 subspaces UJ ’s, where
∅ 6= J ⊆ [1 : m]. Then from the assumption of the lemma, for k ∈ [1 : 2m − 1]
and any selection of subsets J1, · · · ,Jk, we have also

θJ1 + · · ·+ θJk
≤ dim (UJ1 + · · ·+ UJk

+ΠE)− dim(ΠE)

≤ dim (UJ1 + · · ·+ UJk
) . (8.72)

Now by defining θE , dim(ΠE), we can apply [101, Lemma 4] to the set of
subspaces UJ ’s and UE to show that there exist subspaces U ′

J ⊑ UJ such that
dim(U ′

J ) = θJ for ∅ 6= J ⊆ [1 : m], and U ′
E = ΠE where all of them are

complementary. Note that in the above argument, we have U ′
E = ΠE because

we set θE = dim(ΠE) (which is an integer number).

Proof of Lemma 8.6. Let us assume that Alice has ΠE. Then she can create
subspaces U ′

J ’s such that by using Lemma 8.5, for k ∈ [1 : 2m − 1] and any
selection of subsets J1, . . . ,Jk, we have

dim(U ′
J1

+ · · ·+ U ′
Jk

+ΠE) = θJ1 + · · ·+ θJk
+ dim(ΠE), (8.73)

which means that
θJ1 + · · ·+ θJk

+ dim(ΠE) ≤ nA. (8.74)
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Now, suppose that Alice does not have access to ΠE. From the proof of
Lemma 8.5, we know that for any k and any subsets J1, . . . ,Jk we have also

θJ1 + · · ·+ θJk
≤ dim (UJ1 + · · ·+ UJk

) , (8.75)

so by using [101, Lemma 4] Alice can find subspaces U ′
J ’s such that they are

complementary and dim(U ′
J ) = θJ for every subset J .

From Alice’s point of view ΠE, is chosen independently and uniformly at
random from ΠA. So by (8.74) and applying Lemma 2.11, the subspace ΠE is
complementary to all U ′

J ’s w.h.p and we are done.

Proof of Lemma 8.7. Construct matrix Y that has as rows the packets y1, . . . ,yk.
Then note that we can write

[
Y

XE

]
=

[
A

F E

]
XA =

[
A

F E

] [
I M

]
, (8.76)

where M is a uniformly random matrix and A ∈ Fk×nA
q is the coefficients of

Y packets.
We now proceed by expanding H(Y |XE). We have

H(Y |XE) = H(Y ,XE)−H(XE)

= H(AM ,F EM)−H(F EM)

=
[
rank(B)− rank(F E)

]
(L− nA) log q, (8.77)

where

B =

[
A

F E

]
∈ F(k+nE)×nA

q . (8.78)

Because ΠY = 〈Y 〉 is orthogonal to 〈XE〉 we have that 〈A〉 is orthogonal to
〈F E〉. Thus we can write

rank(B) = rank(A) + rank(F E). (8.79)

Finally, we can proceed as follows

I(Y ;XE) = H(Y )−H(Y |XE)

=
[
rank(A)− [rank(B)− rank(XE)]

]
(L− nA) log q

= 0. (8.80)

This proves the assertion of the lemma.





“To achieve great things, two

things are needed; a plan, and

not quite enough time.”

Leonard Bernstein

Discussion and Future

Directions 9
In this thesis, we have mainly considered communication networks which

allow for inter-network linear operations, i.e., the relay nodes perform linear
NC. Although a complete theory of network information is yet to be discovered,
the advent of NC paradigm opens new opportunities and provides new insights
for network information flow algorithms. During the thesis, we have focused on
various problems that arise in this context.

Non-coherent Network Coding

In the first part of the thesis, we have studied a non-coherent NC scenario,
motivated by randomized NC, where neither source(s) nor destination(s) do not
have any knowledge about the network operation. To this end, we have consid-
ered two different channel models where in both cases the network operation
is captured by a multiplicative matrix channel over some finite field.

In the first model, we have assumed that the transfer matrix is distributed
uniformly among all possible matrices. For this communication scenario, we
have characterized the capacity for a unicast communication as well as we
have derived the rate region of a two users multiple access scenario. 1 Our
results shows that coding over subspaces is sufficient to achieve the capacity.
Moreover, we have proved that the throughput benefits subspace coding offers
as compared to the use of coding vectors go to zero as the alphabet size q
increases, and thus use of coding vectors is (asymptotically) optimal. However,
when the alphabet size is small finding an efficient coding scheme is still an
open problem.

1. It is worthwhile to mention that while our MAC result is only derived for two users, the
same technique can be extended to find the rate region of a non-coherent NC MAC problem
with more than two users.
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In the second model, which is in some sense more universal than the previ-
ous one, the network operation is captured by a multiplicative matrix channel,
however with only a known distribution over the rank of the transfer matrix.
This model recalls the classical AVC problem but with probabilistic constraints
as opposed to deterministic constraints that have been considered in the liter-
ature. We have named such an AVC problem with probabilistic constraints as
partially AVC (PAVC). For this model of non-coherent NC, we have charac-
terized the capacity as well and prove that subspace coding is again sufficient
to achieve it. However, finding an efficient coding scheme to achieve the ca-
pacity for the cases where the rank distribution of the transfer matrix is not
concentrated over some number is an open problem.

In all of the previous models, we have not taken into account the correla-
tion between the network topology and the channel model of the non-coherent
NC, i.e., captured by the distribution of the transfer matrix. This has been
done because the exact characterization of the transfer matrix based on the
network topology is an extremely hard problem. However, as a future direction
of research, even finding an approximate relation between network topology
and the transfer matrix’s distribution would greatly help us to analyze more
realistic and practical models.

Subspace Properties of Network Coding

We have started the second part of the thesis by observing that the pack-
ets (message vectors) traversing the networks carry topological and state-
dependent information about the network. In order to distill this information,
we have investigated the properties of subspaces spanned by the packets re-
ceived at every node 2. To this end, we have studied the properties of randomly
selected subspaces from a linear space defined over a finite field in Chapter 2.
Then, these properties have been adapted in Chapter 6 towards different ap-
plications. As the first application, by extending the aforementioned properties
to random subspaces evolving over time, we have studied the conditions under
which we can passively infer the network topology during content dissemination
by having access to a global view of the network. As the second application,
which in some sense is the dual of the previous problem, we have focused on
locating Byzantine attackers in the network. Finally, in the last application,
we have observed that even having access to the subspaces received at a node,
we can obtain some information regarding the network. So we have leveraged
this observation and proposed a decentralized scheme for breaking bottlenecks
in the network.

2. Note that in case of using coding vectors, the subspaces spanned by the coding vectors is
isomorphic to the subspaces spanned by the whole message vectors, as explained in Chapter 6.
So instead of considering the subspaces spanned by the message vectors we may only focus
on the subspaces spanned by the coding vectors.



Discussion and Future Directions 203

Secrecy

In the last part of the thesis, we have focused on the secret key sharing
problem among multiple terminals from an information theoretical point of
view. More precisely, we have studied the problem of secret key sharing among
multiple trusted (authenticated) entities having access to a broadcast channel
which is overheard by a passive eavesdropper. In addition to the broadcast
channel, the trusted terminals can discuss over a public channel. For the above
setup, we have been interested in characterizing the secrecy capacity in non-
coherent NC scenarios as well as wireless environments.

Although it seems that these two problems differ very much in nature, we
have used similar techniques based on the insights we gained from studying the
erasure broadcast channel. The proposed achievability scheme for the erasure
broadcast channel achieves the secrecy capacity efficiently (it is a polynomial
time algorithm) and it is based on ideas from NC to reconciliate the secret key
among the terminals. Then, by extending this achievability scheme we have
proposed schemes for secret key sharing among multiple terminals for non-
coherent broadcast channels as well as state-dependent Gaussian broadcast
channels.

There are many open questions in this context. The above-mentioned prob-
lem of finding the capacity of secret key sharing among multiple terminals in
its general form (for an arbitrary broadcast channel) is still open. Even the
secrecy capacity for the non-coherent and state-dependent Gaussian broadcast
channels is unknown. One of the most important questions for this problem (in
its general form) is that whether or not it is sufficient to achieve the secrecy
capacity by converting the (channel) problem to a source problem where Alice
emulates a multi-terminal correlated source by sending a random sequence over
the broadcast channel.





Partial List of Symbols

In the following, a list of frequently used notations, symbols, and abbrevi-
ations are presented.

, Definition.
N Set of natural numbers.
Z Set of integer numbers.
R Set of real numbers.
R+ Set of non-negative real numbers.
R++ Set of positive real numbers.
[i : j] Set of integer numbers {i, i + 1, . . . , j} where i, j ∈ Z and

i ≤ j.
Fq Finite field of size q.
Fm×n
q The set of all m× n matrices over Fq.

Fm×n,k
q The set of all m× n matrices over Fq with rank k.

hwt(v) Hamming weight of a vector v.
≻ and ≺ Element-wise inequality between vectors and matrices of

the same size.
⊆ Subset relation.
⊑ Subspace relation.
[n, k, d]q A linear code of length n, dimension k, and minimum dis-

tance d defined over Fq.[
n
m

]
q

The Gaussian number; see Definition 2.2.

Uni (M) Uniform distribution over a setM.
N (µ, σ2) Gaussian distribution with mean µ and variance σ2.
P [A] Probability of an event A.
E [·] Expectation operator.
var(X) The variance of a random variable X .
cov(v) The covariance matrix of a random vector v.
AVC Arbitrarily varying channel.
CSI Channel state information.
DMC Discrete memory-less channel.
GLFP Generalized linear fractional programming.
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MAC Multiple access channel.
MDS Maximum distance separable.
MIMO Multiple-input and multiple-output.
NC Network coding.
P2P Peer-to-Peer.
PAVC Partially arbitrarily varying channel. See Chapter 4 for the

definition.
SNR Signal to noise ratio.
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