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Motivation

® Consider a network performing randomized linear NC:
® Nodes operation: linearly and randomly combine packets

® Sources and destinations are oblivious to the relay nodes
operations and network topology

® There exist random delay, synchronization error, etc...

® => 3 non-coherent transmission scenario

oK

® How do we model this transmission scenario!?
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Operator Channel - Subspace Coding

(Kotter and Kschischang 2008)

® Observation: The linear network coding is subspace preserving

® [nformation transmission: is done by the injection of a basis
for the vector space lls into the network

® [nformation reception:is done by collecting a basis for the
vector space llp by the receiver

® The network is modeled by the operator channel:

IIp =Hi(Ilg) & 1lg

e [KK-IT08] focused on code construction in P(Fy) which is a
combinatorial problem

® They proposed subspace codes with block length one

® They didn’t consider any specific probabilistic model for this
channel
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Matrix Channel

The network operation can be modeled by a multiplicative matrix

channel:

The input and output sym
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If we impose an appropriate probabilistic model => we can define

capacity for this channel

To achieve the capacity we might need a coding scheme over
multiple blocks: a codeword is a sequence of matrices
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Related Work

Uniform and i.i.d. distribution over all matrices (Jafari et al):
C=1"(L—13")0ogq+ o04(1) i* = min[M, N, | L/2]]

Uniform and i.i.d. distribution over full-rank matrices (Silva et al):

(3]

For a general distribution there are bounds (Yang et al):
(L — M)E [rank(H)|logqg+ k < C < LE [rank(H )] logq
Uniform given rank distribution (u.g.r.) (Nobrega et al)
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Related Work

Uniform and i.i.d. distribution over all matrices (Jafari et al):
C=1"(L—13")0ogq+ o04(1) i* = min[M, N, | L/2]]

Uniform and i.i.d. distribution over full-rank matrices (Silva et al):

O = log (i mq)

For a general distribution there are bounds (Yang et al):
(L — M)E [rank(H)]log g + k < C < LE [rank(H)]log g
Uniform given rank distribution (u.g.r.) (Nobrega et al)
Disadvantages of considering a specific distribution for H[t]:
® The distribution of H|{| depends on the

® |tis very hard to relate transfer matrix distribution to the

actual => need for less restrictive model
6
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Problem Setup: Alternative Model

The non-coherent NC channel is modeled by a multiplicative
matrix channel:

The channel transfer matrix is unknown to both Tx and Rx

H{[t] changes arbitrarily from block to block with a constraint on its
ranl¢ the rank of H[t]are i.i.d.and H[t] ~ R

The distribution R is known by Tx and Rx

This is similar to AVC model but with a probabilistic constraint
This is a worst case model

even if we cannot find the rank distribution we can

measure it in practice!
8
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Partially Arbitrarily Varying Channel

® Arbitrarily varying channel (AVC):

S|t] XeX
| Yey
Xt] > Channel > Y |t] S5€S

® Channel state varies arbitrarily at every time-slot:

W (y|x; s) £ H W (ye|z+; st)

t=1
® Partially arbitrarily varying channel (PAVC):

® AnAVC with a probabilistic constraint over the state space

® Define a functiongq:S — Q where Q =10,...,m} then

Pysy(ai,---,qn) HPR ar)

9
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Partially Arbitrarily Varying Channel

® Similar to AVC, PAVC problem have many different variations

® For the average error probability, we have characterized the
capacity of randomize and deterministic codes

® Theorem:The randomize code capacity of a PAVC is given by:
Ch? =max min I(Px,Ws) = min maxI(Px,Ws)

pave Px  Psjq(s) Psiqs)y Px
where Ws(yle) £ E[W (y]z; )]
Slt]
v
Enc —— X|[t|] ——| Channel —— Y'[t]| ——| Dec

i)

Randomness

|0
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Partially Arbitrarily Varying Channel

® T[heorem:The deterministic code capacity of a PAVC is non-zero iff
the PAVC in non-symmetrizable. If C5;%. > 0 then we have

Chave = Chave
° A PAVC is symmetrizable if for every x,x’ and y we
have
ZW yla; s)U (2’ q(s ZW yla's s)U (s|z, q(s)) Pr(q(s))

ﬁ Distributed according to the probabilistic constraint

L —> U > G

\ / }

T ——> Channel —— VY
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Capacity of Non-coherent NC

The proposed model for the non-coherent NC is a PAVC

Theorem:The randomized and deterministic code capacities of the
proposed channel are the same and are equal to

C'=max min I(X;Y)
Px  Prrk(H)

For the deterministic code: we need to show that the channel is
non-symmetrizable => it is hard to show this directly

Wednesday, July 4, 12



Capacity of Non-coherent NC

The proposed model for the non-coherent NC is a PAVC

Theorem:The randomized and deterministic code capacities of the
proposed channel are the same and are equal to

C'=max min I(X;Y)
Px  Prrk(H)

For the deterministic code: we need to show that the channel is
non-symmetrizable => it is hard to show this directly

m 0@ >® ()
I: — Hlt] | x X W —
1 BJt] 1 >® 1
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Capacity of Non-coherent NC

® [ emma:The uniform given rank (u.g.r.) distribution for Py .kx) is a

minimizer in: C = max min I(X;Y)
Px Py rk(H)

® Suppose that A and B are full-rank and uniformly at random chosen
matrices => H and AH B have the same ranl distribution but AHB
IS u.g.r.

® By data processing inequality: if Prpk() is a minimizer then the
u.g.r. distribution with the same rank distribution is also a
minimizer
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Capacity of Non-coherent NC

® Theorem: C = H})&XI(X; HX)
X

where H has the same rank distribution as A but it is a u.g.r.
o [NUS-ISITII]:

® Corollary: Coding over subspaces is sufficient to achieve the
capacity

® The problem of finding capacity reduces to a convex
optimization problem on O(min[M, L]) variables

® Remark:A simpler proof is possible without the need for the PAVC
results => for more discussion refer to the paper

Wednesday, July 4, 12



Conclusion

® We have proposed a new model for the non-coherent network
coding based on the notion of AVC

® The NCNC has been modeled by a multiplicative matrix

channel with arbitrarily varying transfer matrix which is
subjected to a rank constraint

® We have characterized the capacity for this model:
it is equivalent to finding the capacity for a u.g.r. model

® TJo this end, we have extended the notion of AVC to an arbitrarily
varying channel with probabilistic constraints on states

® For the average probability of error, we have derived the
capacity for the randomized and deterministic code
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Thank You!




