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Motivation

• Consider a network performing randomized linear NC:

• Nodes operation: linearly and randomly combine packets

• Sources and destinations are oblivious to the relay nodes 
operations and network topology

• There exist random delay, synchronization error, etc...

• => a non-coherent transmission scenario

• How do we model this transmission scenario?
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Operator Channel - Subspace Coding
(Kotter and Kschischang 2008)

• Observation: The linear network coding is subspace preserving

• Information transmission: is done by the injection of a basis 
for the vector space       into the network

• Information reception: is done by collecting a basis for the 
vector space       by the receiver

• The network is modeled by the operator channel:

• [KK-IT08] focused on code construction in           which is a 
combinatorial problem

• They proposed subspace codes with block length one 

• They didn’t consider any specific probabilistic model for this 
channel
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Matrix Channel

• The network operation can be modeled by a multiplicative matrix 
channel:

• The input and output symbols are matrices over  

• If we impose an appropriate probabilistic model => we can define 
capacity for this channel

• To achieve the capacity we might need a coding scheme over 
multiple blocks: a codeword is a sequence of matrices
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Related Work

• Uniform and i.i.d. distribution over all matrices (Jafari et al):

• Uniform and i.i.d. distribution over full-rank matrices (Silva et al):

• For a general distribution there are bounds (Yang et al):

• Uniform given rank distribution (u.g.r.) (Nobrega et al)
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• Disadvantages of considering a specific distribution for      :

• The distribution of       depends on the network topology

• It is very hard to relate transfer matrix distribution to the 
actual network topology => need for less restrictive model
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Problem Setup: Alternative Model

• The non-coherent NC channel is modeled by a multiplicative 
matrix channel:

• The channel transfer matrix is unknown to both Tx and Rx

•       changes arbitrarily from block to block with a constraint on its 
rank:  the rank of       are i.i.d. and 

• The distribution     is known by Tx and Rx

• This is similar to AVC model but with a probabilistic constraint

• This is a worst case model

• Advantage: even if we cannot find the rank distribution we can 
measure it in practice!
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Partially Arbitrarily Varying Channel

• Arbitrarily varying channel (AVC):

• Channel state varies arbitrarily at every time-slot:

• Partially arbitrarily varying channel (PAVC):

• An AVC with a probabilistic constraint over the state space

• Define a function               where                     then
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Partially Arbitrarily Varying Channel

• Similar to AVC, PAVC problem have many different variations

• For the average error probability, we have characterized the 
capacity of randomize and deterministic codes

• Theorem: The randomize code capacity of a PAVC is given by:

where
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Partially Arbitrarily Varying Channel

• Theorem: The deterministic code capacity of a PAVC is non-zero iff 
the PAVC in non-symmetrizable. If               then we have

• Defenition: A PAVC is symmetrizable if for every x,x’ and y we 
have:
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Capacity of Non-coherent NC

• The proposed model for the non-coherent NC is a PAVC

• Theorem: The randomized and deterministic code capacities of the 
proposed channel are the same and are equal to

• For the deterministic code: we need to show that the channel is 
non-symmetrizable => it is hard to show this directly 
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Capacity of Non-coherent NC

• Lemma: The uniform given rank (u.g.r.) distribution for             is a 
minimizer in:

• Suppose that    and    are full-rank and uniformly at random chosen 
matrices =>     and         have the same rank distribution but          
is u.g.r. 

• By data processing inequality: if             is a minimizer then the 
u.g.r. distribution with the same rank distribution is also a 
minimizer

13

PH|rk(H)

C = max

PX

min

PH|rk(H)

I(X;Y )

A B

H AHB AHB

P ⇤
H|rk(H)

Wednesday, July 4, 12



Capacity of Non-coherent NC

• Theorem:

where     has the same rank distribution as     but it is a u.g.r.

• [NUS-ISIT11]:

• Corollary: Coding over subspaces is sufficient to achieve the 
capacity

• The problem of finding capacity reduces to a convex 
optimization problem on                   variables

• Remark: A simpler proof is possible without the need for the PAVC 
results => for more discussion refer to the paper
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Conclusion

• We have proposed a new model for the non-coherent network 
coding based on the notion of AVC

• The NCNC has been modeled by a multiplicative matrix 
channel with arbitrarily varying transfer matrix which is 
subjected to a rank constraint

• We have characterized the capacity for this model:               
it is equivalent to finding the capacity for a u.g.r. model

• To this end, we have extended the notion of AVC to an arbitrarily 
varying channel with probabilistic constraints on states

• For the average probability of error, we have derived the 
capacity for the randomized and deterministic code
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Thank You!
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