
Low-Complexity
Stochastic Generalized Belief Propagation

Farzin Haddadpour
Electrical Engineering Department
Sharif University of Technology

Email: farzin haddadpour@alum.sharif.edu

Mahdi Jafari Siavoshani
Computer Engineering Department

Sharif University of Technology
Email: mjafari@sharif.edu

Morteza Noshad
Electrical Engineering and

Computer Science Department
University of Michigan

Email: noshad@umich.edu

Abstract—The generalized belief propagation (GBP), intro-
duced by Yedidia et al., is an extension of the belief propagation
(BP) algorithm, which is widely used in different problems
involved in calculating exact or approximate marginals of prob-
ability distributions. In many problems, it has been observed
that the accuracy of GBP outperforms that of BP considerably.
However, due to its generally higher complexity compared to BP,
its application is limited in practice.

In this paper, we introduce a stochastic version of GBP called
stochastic generalized belief propagation (SGBP) that can be
considered as an extension to the stochastic BP (SBP) algorithm
introduced by Noorshams et al. They have shown that SBP
reduces the complexity per iteration of BP by an order of mag-
nitude in alphabet size. In contrast to SBP, SGBP can reduce the
computation complexity if certain topological conditions are met
by the region graph associated to a graphical model. However,
this reduction can be larger than only one order of magnitude in
alphabet size. In this paper, we characterize these conditions
and the amount of complexity gain that one can obtain by
using SGBP. Finally, using similar proof techniques employed by
Noorshams et al., for general graphical models satisfy contraction
conditions, we prove the asymptotic convergence of SGBP to the
unique GBP fixed point, as well as providing non-asymptotic
upper bounds on the mean square error and on the high
probability error.

I. INTRODUCTION

Graphical models and corresponding message-passing algo-
rithms have attracted a great amount of attention due to their
wide-spreading application in many fields, including signal
processing, machine learning, channel and source coding,
computer vision, decision making, and game theory (e.g., see
[1], [2]).

Finding marginal and mode of a probability distribution
are two basic problems encountered in the field of graphical
models. Taking the rudimentary approach, the marginalization
problem has exponentially growing complexity in alphabet
size. However, using BP algorithm (firstly introduced in [3])
to solve this problem either exactly or approximately, we can
reduce the computational complexity to a significant degree. It
has been proved that applying BP on graphical models without
cycles provides exact solution to the marginalization problem.
Furthermore, it has been observed that for general graphs, BP
can find good approximations for marginalization (or finding
mode) problems, [1], [2].

Although BP has many favourable properties, it suffers
from some limiting drawbacks. First, in complex and densely

interconnected graphs, BP may not be able to produce accurate
results; and even worse, it may not converge at all. Second,
since in many applications (e.g., decoding of error-correcting
codes) messages are of high dimensions, the computational
complexity of BP algorithm will highly increase which leads
to slow convergence rates.

To deal with the first drawback, some works have been done
to propose alternative algorithms (e.g., see [4], [5], [6], [7]).
Specifically, to improve the accuracy of estimated marginal
distribution, a generalization algorithm to BP has been in-
troduced by Yedidia et al. [8], known as Generalized Belief
Propagation (GBP) algorithm. In their proposed algorithm,
local computation is performed by a group of nodes instead
of a single node as in BP. According to many empirical
observations, GBP outperforms BP in many situations; [9],
[10], [11], [12]. However, although GBP algorithm provides
accurate results in terms of marginal distribution, it suffers
from high order of computation complexity, specially in case
of large alphabet size.

To overcome the second aforementioned deficiency of BP,
lots of research have been conducted to reduce BP complexity
for different applications (e.g., refer to [13], [14], [15], [16],
[17], [18], [19], [20]). In a recent work by Noorshams et
al. [21], to tackle with the challenge of high complexity in
the case of large alphabet size, they introduce an alternative
stochastic version of BP algorithm with potentially lower
complexity. The main idea behind their work is that each node
sends a randomly sampled message taken from a properly
chosen probability distribution instead of computing the exact
message update rule in each iteration.

In this work, motivated by [21] and in order to mitigate
the computational complexity of GBP, we extend GBP and
propose stochastic GBP (SGBP) algorithm. SGBP has the
advantage of reducing the complexity, while increasing the
accuracy of estimation. In contrast to SBP, SGBP algorithm
can reduce the computational complexity only if certain topo-
logical conditions are met by the region graph (defined later)
associated to a graphical model. However, the complexity gain
can be larger than only one order of magnitude in alphabet
size. We characterize these conditions and the amount of
computational gain that we can obtain by performing SGBP
instead of GBP. Determining these criteria, we hope that they
provide some useful guidelines on how to choose the regions

2016 IEEE International Symposium on Information Theory

978-1-5090-1806-2/16/$31.00 ©2016 IEEE 785



and construct the region graph in a way that results to a lower
complexity algorithm with good accuracy.

The rest of the paper is organized as follows. First, §II
introduces our problem statement. In §III, we present the
proposed stochastic GBP and then derive the topological
conditions that guarantee SGBP has lower complexity than
GBP. Moreover, theoretical convergence results have been
provided as well. Finally, to validate our theoretical results,
considering a specific graphical model, SGBP is simulated and
the results are presented. For an extended version of this work
please refer to [22].

II. PROBLEM STATEMENT

A. Notation

In the following, we introduce the notation that will be used
in the paper. The random variables are represented by upper
case letters and their values by lower case letters. Vectors
and matrices are determined by bold letters. Sometimes, we
use calligraphic letters to denote sets. When we have a set
of random variables X1, . . . , Xn, we write XA to denote
(Xi, i ∈ A). An undirected graph G = (V, E) is defined by a
set of nodes V = {1, 2, . . . , n} and a set of edges E ⊆ V ×V ,
where (u, v) ∈ E if and only if nodes u and v are connected.
Similarly, we can define a directed graph.

For every function f(x1, x2, . . . , xn) where f : Xn 7→ R,
we define the operator L as a map that turns this function to a
vector L(f) ∈ R|X |n×1 by evaluating f at every input point.

B. Graphical Model

Undirected graphical models, also known as Markov ran-
dom fields (MRF), is a way to represent the probabilistic
dependencies among a set of random variables having Markov
properties using an undirected graph. More precisely, we say
that a set of random variables X1, . . . , Xn form an MRF
if there exists a graph G = (V, E), where each Xi is
associated to the node i ∈ V = {1, . . . , n}, and edges of
the graph G encode Markov properties of the random vector
X = (X1, . . . , Xn). These Markov properties are equivalent
to a factorization of the joint distribution of random vector
X over the cliques of graph G [23]. In this paper, we focus
on discrete random variables case where for all j ∈ V we
have Xj ∈ X , {1, 2, . . . , d}. Moreover, we assume that the
distribution of X is factorized according to

p(x) =
1

Z

∏
a∈F

φa(xa)

where F is a collection of subsets of V and Z is a constant
called the partition function. For the factor functions φa, we
have also φa ≥ 0. This factorization can be represented by
using a bipartite graph Gf = (V,F , Ef ) called factor graph.
In this representation, the variable nodes V correspond to
random variables Xi’s and factor nodes F determine the factor
functions φa’s. Moreover, there exists an edge (i, a) ∈ Ef
between a variable node i and a factor node a if the variable
xi appears in the factor φa (for more information on factor
graphs refer to [1]).

C. Region Graph
In order to present the Yedidia’s parent-to-child algorithm

[8] as well as introducing our stochastic GBP algorithm, we
need to state some definitions as follows.

Definition 1 (see [8]). A region graph Gr = (R, Er) defined
over a factor graph Gf = (V,F , Ef ) is a directed graph in
which for each vertex v ∈ R (corresponding to a region) we
have v ⊆ V ∪ F . Each region v has this property that if a
factor node a ∈ F belongs to v then all of its neighbouring
variable nodes have to also belong to v. A directed edge (vp →
vc) ∈ Er may exist if vc ⊂ vp. If such an edge exists, vp is a
parent of vc, or equivalently, vc is a child of vp. If there exists
a directed path from va to vd on Gr, we say that va is an
ancestor of vd and vd is a descendant of va.

Now, for each R ∈ R, we let P(R) denotes for the set of
all parents of R, A(R) denotes for the set of all ancestors
of R and D(R) denotes for the set of all descendants of R.
Moreover, we define E(R) , R ∪ D(R). Finally, for R ∈ R,
we use |R| to denote for the number of variable nodes in R.

D. Parent-to-child GBP algorithm
Yedidia et al., generalize the idea behind BP in [8], propos-

ing an algorithm called parents-to-child GBP algorithm1. As
explained in [8], in the parent-to-child algorithm, we have only
one kind of message mP→R(xR) from a parent region P to a
child region R. Then, for the belief of region R ∈ R we have

bR(xR) ∝ ΦR(xR)×
∏

P∈P(R)

mP→R(xR)

×
∏

D∈D(R)

∏
P ′∈P(D)\E(R)

mP ′→D(xD) (1)

where ΦR(xR) ,
∏
a∈R φa(xa) (with an abuse of notation

when we product over a ∈ R we mean to product only over
the factor indexes of R). Moreover, the message update rule
over each edge (P,R) ∈ Er is given by

mP→R(xR) =

∑
xP\R

ΦP\R(xP ′)
∏

(I,J)∈N(P,R)mI→J(xJ)∏
(I,J)∈D(P,R)mI→J(xJ)

=
∑
xP\R

ΦP\R(xP ′)M̂(xTPR
) (2)

where ΦP\R(xP ′) ,
ΦP

ΦR
(xP ′) and P ′ is the set of all

variables appear in ΦP

ΦR
(xP ′). In addition, we have also

N(P,R) ,
{

(I, J)|(I, J) ∈ Er, I /∈ E(P ), J ∈ E(P )\E(R)
}

and

D(P,R) ,
{

(I, J)|(I, J) ∈ Er, I ∈ D(P )\E(R), J ∈ E(R)
}
.

Notice that the sets N(P,R) and D(P,R) can be calculated
in advance. Also, M̂(xTPR

) in (2) is defined as follows

M̂(xTPR
) ,

∏
(I,J)∈N(P,R)mI→J(xJ)∏
(I,J)∈D(P,R)mI→J(xJ)

,

1More precisely, they have proposed different variation of GBP but here
we only focus on parent-to-child algorithm.
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where TPR is the set of all variables that appear in the above
ratio.

Remark 1. In the parent-to-child algorithm, the message
transmitted over each edge (P,R) ∈ Er can be considered as
a vector by applying the operator L(·). Namely, by concate-
nating all possible messages, we define mP→R , L(mP→R)

where mP→R ∈ Rd|R| . Moreover, concatenating all the
messages over all edges of the region graph, we define
m , {mP→R}(P,R)∈Er ∈ R∆ where ∆ =

∑
(P,R)∈Er d

|R|.
�

Now, we can state the complexity of the parent-to-child
GBP algorithm as stated in the following lemma.

Lemma 1. The computation complexity of the message update
rule associated with each edge in the parent-to-child GBP
algorithm, computed according to (2), is O(d|P |).

Proof: For each fixed vector xR, the calculation of
mP→R(xR) =

∑
xP\R

ΦP\R(xP ′)M̂(xTPR
) requires d|P\R|

operations. Moreover, to determine mP→R(·) completely, one
needs to evaluate the above summation O(d|R|) times. Con-
sequently, the overall complexity of calculating mP→R(xR)
is of order O(d|R| × d|P\R|) = O(d|P |).

At each round of the parent-to-child algorithm, t = 1, 2, . . .,
every parent node P of R in the region graph calculates a
message m(t+1)

P→R and sends it to node R. Mathematically, this
can be written as (see [8])

m
(t+1)
P→R(xR) =

[
ΥP→R(m(t))

]
(xR)

=
∑
xP\R

ΦP\R(xP ′)M̂
(t)(xTPR

).

Now, this expression can be expanded as

m
(t+1)
P→R(xR) =

∑
x(P\R)\TPR

∑
x(P\R)∩TPR

ΦP\R(xP ′)M̂
(t)(xTPR

)

= k
(t)
PR

(
xTPR\(P\R)

) ∑
x(P\R)\TPR

∑
x(P\R)∩TPR

[
ΦP\R(xP ′)

×Q(t)(xTPR∩(P\R)|xTPR\(P\R))
]
, (3)

where

Q(t)(xTPR∩(P\R)|xTPR\(P\R)) ,

M̂ (t)
(
xTPR∩(P\R),xTPR\(P\R)

)∑
x′

TPR∩(P\R)
M̂ (t)

(
x′TPR∩(P\R),xTPR\(P\R)

) (4)

is a conditional distribution. Moreover,

k
(t)
PR

(
xTPR\(P\R)

)
,
∑

x′
TPR∩(P\R)

M̂ (t)
(
x′TPR∩(P\R),xTPR\(P\R)

)
.

Hence, for the update rule we can write

m
(t+1)
P→R(xR) = k

(t)
PR

∑
x(P\R)\TPR

E[X(P\R)∩TPR
∼Q(t)]

[
ΦP\R(XP ′)

]
(5)

Here and in the following, for brevity and clarity of nota-
tion, we will omit the dependence of k(t)

PR to the variables
xTPR\(P\R).

Now, notice that we can decompose the set P ′ as follows

P ′ = [(P \R) ∩ TPR] ∪ [(P \R) \ TPR] ∪ [P ′ \ (P \R)]

because we always have P \ R ⊆ P ′. By using this relation,
we can rewrite (5) as

m
(t+1)
P→R(xR) = k

(t)
PR

∑
x(P\R)\TPR

E[X(P\R)∩TPR
∼Q(t)]

[

ΦP\R

(
X(P\R)∩TPR

,x(P\R)\TPR
,xP ′\(P\R)

)]
. (6)

In (3), ΥP→R : R∆ 7→ Rd|R| is the local update function
of the directed edge (P,R) ∈ Er. By concatenating all of the
local update functions over the edges of the region graph, we
can define the global update function as

Υ(m) =
[
ΥP→R(m) : (P,R) ∈ Er

]
(7)

where Υ : R∆ 7→ R∆. The goal of the (parent-to-child) GBP
algorithm is to find a fixed point m∗ that satisfies Υ(m∗) =
m∗. If a fixed point m∗ is found, then the beliefs of random
variables in a region R ∈ R is computed by applying (1).

III. STOCHASTIC GENERALIZED BELIEF PROPAGATION
ALGORITHM

In this section, first we introduce our stochastic extension to
the parent-to-child GBP algorithm, and then present a result
on the criteria where this algorithm is able to mitigate the
computation complexity of GBP.

Based on (6), we introduce our algorithm as stated in
Algorithm 1. The main idea of the algorithm is that under
proper conditions (that will be stated in Theorem 1), some
parts of the message update rule (2) for each edge of the
region graph can be written as an expectation as stated in (6).

Algorithm 1 Stochastic Generalized Belief Propagation
(SGBP) algorithm.

1: Initialize the messages.
2: for t ∈ {1, 2, . . .} and each directed edge (P,R) ∈ Er do
3: Choose a random vector J

(t+1)
PR ∈ X |TPR∩(P\R)|

according to the conditional distribution
Q(t)(xTPR∩(P\R)|xTPR\(P\R)) defined in (4).

4: Update the message m
(t+1)
P→R with the appropriately

tuned step size α(t) = O( 1
t ) according to

m
(t+1)
P→R(xR) = (1− α(t))m

(t)
P→R(xR)

+ α(t)k
(t)
PR

∑
x(P\R)\TPR

ΦP\R

(
J

(t+1)
PR ,x(P\R)\TPR

,xP ′\(P\R)

)
(8)

5: t = t+ 1
6: end for
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Remark 2. Note that when (P \ R) ∩ TPR = ∅, the update
rule (8) becomes deterministic as stated in the following

m
(t+1)
P→R(xR) = (1− α(t))m

(t)
P→R(xR)

+ α(t)k
(t)
PR(xTPR)

[ ∑
x(P\R)

ΦP\R
(
x(P\R),xP ′\(P\R)

) ]
.

It is shown in [22] that this condition can only happen
in update rules corresponding to the highest-level ancestors
regions. �

In contrast to SPB studied in [21], the stochastic version of
GBP does not always reduce the computational complexity
in each iteration. Theorem 1 describes the topological and
regional conditions for which the complexity of SGBP is less
than GBP for a specific edge of the region graph.

Theorem 1. Our proposed algorithm that runs over a region
graph Gr reduces the computation complexity of each message
mP→R (compared to GBP) if and only if the following
conditions hold
(i) (P \R) ∩ TPR 6= ∅,

(ii) (P \R) * TPR.

Proof: The main idea of the proof lies in the fact that
whether or not (2) can be written in the form of an expected
value of potential functions as stated in (6). If this happens,
as presented in Algorithm 1, the complexity of update rules
can be reduced. To be able to have an expectation operation
in (6), we should have (P \R) ∩ TPR 6= ∅.

Now, assuming condition (i) holds, we find the complexity
of Algorithm 1’s update rule over every edge (P,R) ∈ Er
in each iteration. First, let us fix xR. To find the PMF of
the random vector JPR which is given by (4), we need
O(d|{P\R}∩TPR| × d|TPR\{P\R}|) = O(d|TPR|) operations.
Notice that since we have TPR \ (P \ R) ⊆ R and [(P \
R) ∩ TPR] ∩ [(P \ R) \ TPR] = ∅, for every fixed xR, the
PMF of JPR does not depend on the vector x(P\R)\TPR

. This
means that for a fixed xR, to find the summation in (8), the
PMF of JPR should only computed once.

Hence, the overall complexity of update rule (8) becomes

O
(
d|TPR| + d|R|[d|(P\R)∩TPR| + d|(P\R)\TPR| + d|(P\R)∩TPR|])

where the terms in the brackets count for a fixed xR the
computation complexity of k(xTPR\(P\R)), of the summation
in (8), and of taking a sample vector JPR from the above PMF,
respectively. The above relation can be rewritten as follows

O
(

max
[
d|TPR|, d|R|+|(P\R)\TPR|, d|R|+|(P\R)∩TPR|]) .

Now, we can conclude that if TPR 6= ∅ and (P \R) 6⊂ TPR
then we have

O
(

max
[
d|TPR|, d|R|+|(P\R)\TPR|, d|R|+|(P\R)∩TPR|]) < O(d|P |),

where the right hand side is the computation complexity of
the parent-to-child GBP algorithm derived in Lemma 1. This
completes the proof of theorem.

Corollary 1. Assuming that the conditions of Theorem 1 hold
and denoting

ηPR , max
[
|TPR|, |R|+ |(P \R) \ TPR|, |R|+ |(P \R) ∩ TPR|

]
,

Algorithm 1 reduces the computation complexity of message
mP→R of the order O(d|P |−ηPR) = O(dIPR) where IPR ,
|P | − ηPR. Notice that IPR can be larger than 1.

Corollary 2. The complexity of the parent-to-child GBP algo-
rithm is dominated by the computation complexity of message
update rule of the highest-level regions in the region graph
Gr. As a result, if the dominant message update rule that
belongs to the highest-level ancestor regions with the largest
size, satisfies the conditions of Theorem 1, then no matter what
are the complexity of other edges, Algorithm 1 will reduce the
overall computation complexity of the parent-to-child GBP.

A. Convergence Rate of SGBP Algorithm

In this section, we extend the convergence guarantees of
[21] to SGBP. Our convergence theorem (Theorem 2) is
based on imposing a sufficient condition similar to [21] that
guarantees uniqueness and convergence of the parent-to-child
GBP message updates. More precisely we assume that the
global update function Υ(·), defined in (7), is contractive,
namely ∃ν, 0 < ν < 2 such that

‖Υ(m)−Υ(m′)‖2 ≤
(

1− ν

2

)
‖m−m′‖2. (9)

Following similar proof technique to [21], with some ap-
propriate modifications, we can obtain the following results.

Theorem 2. Assume that, for a given region graph, the global
update function Υ is contractive with parameter 1 − ν

2 as
defined in (9). Then, parent-to-child GBP has a unique fixed
point m∗ and the message sequence {m(t)

P→R}∞t=1 generated
by the SGBP algorithm has the following properties:

i) The result of SGBP is consistent with GBP, namely we
have m(t) a.s.−→m∗ as t −→∞.

ii) Bounds on mean-squared error: Let us divide the fixed
point message m∗ into two parts, m∗ = (m∗E1 ,m

∗
E∼1

),
where m∗E1 corresponds to those edges of the region
graph that perform constant update rule (see [22] for
more details), while m∗E∼1

corresponds to the rest of
edges. Choosing step size α(t) = α

ν(t+2) for some fixed

1 < α < 2 and defining δ
(t)
i , m

(t)
i −m

∗
i

‖m∗i ‖2
for each

i ∈ {1,∼ 1}, we have

E[‖δ(t)‖22]

‖m∗‖22
≤
(

3αα2Λ(Φ′, klu)

2α(α− 1)ν2

)
1

t
+

E[‖δ(0)
E∼1
‖

2

2
]

‖m∗E∼1
‖22

(
2

t

)α
for all iteration t = 1, 2, 3, . . . where Λ(Φ′, klu) is a con-
stant which depends on some factor functions (through
Φ′) and some variable nodes (through klu). For more
details refer to [22].
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iii) High probability bounds on error: With step size α(t) =
1

ν(t+1) , for any 1 > ε > 0 and ∀t = 1, 2, . . . , we have

δ(t+1) ≤ Λ(Φ′, klu)

ν2

1 + log(t+ 1)

t+ 1

+
4Q(Φ′, klu)

ν2
√
ε

√
(1 + log(t+ 1))2 + 4

t+ 1

with probability at least 1− ε.

The proof of Theorem 2 and more discussion about the
overall complexity of SGBP versus GBP can be found in [22].

B. Simulation Results

In this section, considering a pairwise MRF, we present
some simulation results to study the impact of our algorithm
along verifying our theoretical results. We choose the so-called
Potts model (which is a generalization to Ising model; see [13])
of size 3× 3 for our simulation purpose (i.e., a 3× 3 lattice).
We have the following potentials assigned to each of the edges
(u, v) ∈ E

ψuv(i, j) =

{
1 if i = j,
γ Otherwise.

where 0 < γ < 1. For the nodes’ potential we have

φu(i) =

{
1 if i = 1,
µ+ σY Otherwise.

in which σ and µ satisfy the conditions 0 < σ ≤ µ and
σ + µ < 1 and Y should have the uniform distribution
over the interval (−1, 1) in addition to being independent
from other parameters. We take the following steps to run
our simulation. First, setting σ = µ = γ = 0.1, we run
parent-to-child algorithm with region size of 2× 2 to get the
asymptotic m∗. Second, with the same parameters and taking
α(t) = 2

(1+t) for d ∈ {4, 8, 16, 32}, we perform Algorithm 1
for the same region graph. It is worth noting that to calculate
E[‖δ(t)‖22]

‖m∗‖22
, we run algorithm 20 times and then average over

error corresponding to each simulation. As it is illustrated in
the simulation result of Figure 1, this result is in consistency
with Theorem 2.
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