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Abstract—In [1], [2] it is shown that the minimum broadcast
rate of a linear index code over a finite field Fq is equal to an
algebraic invariant of the underlying digraph, called minrankq .
In [3], it is proved that for F2 and any positive integer k,
minrankq(G) ≤ k if and only if there exists a homomorphism
from the complement of the graph G to the complement of a
particular undirected graph family called “graph family {Gk}”.
As observed in [2], by combining these two results one can
relate the linear index coding problem of undirected graphs to
the graph homomorphism problem. In [4], a direct connection
between linear index coding problem and graph homomorphism
problem is introduced. In contrast to the former approach, the
direct connection holds for digraphs as well and applies to any
field size. More precisely, in [4], a graph family {Hq

k} has been
introduced and shown that whether or not the scalar linear index
of a digraph G is less than or equal to k is equivalent to the
existence of a graph homomorphism from the complement of G
to the complement of Hq

k .
In this paper, we first study the structure of the digraphs Hq

k
defined in [4]. Analogous to the result of [2] about undirected
graphs, we prove that Hq

k’s are vertex transitive digraphs. Using
this, and by applying a lemma of Hell and Nesetril [5], we derive a
class of necessary conditions for digraphs G to satisfy lindq(G) ≤
k. Particularly, we obtain new lower bounds on lindq(G).

Our next result is about the computational complexity of scalar
linear index of a digraph. It is known that deciding whether
the scalar linear index of an undirected graph is equal to k or
not is NP-complete for k ≥ 3 and is polynomially decidable for
k = 1, 2 [3]. For digraphs, it is shown in [6] that for the binary
alphabet, the decision problem for k = 2 is NP-complete. We
use graph homomorphism framework to extend this result to
arbitrary alphabet.

Index Terms—Index coding, linear index coding, graph homo-
morphism, minrank of a graph, computational complexity of the
minrank.

I. INTRODUCTION

The index coding problem, first introduced by Birk and Kol
in the context of satellite communication [7], has received
significant attention during past years (see for example [1],
[8]–[17]). This problem has many applications such as satellite
communication, multimedia distribution over wireless net-
works, and distributed caching. Despite its simple description,
the index coding problem has a rich structure and it has
intriguing connections to some information theory problems.
It has been recently shown that the feasibility of any network
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coding problem can be reduce to an equivalent feasibility
problem in the index coding problem (and vice versa) [18].
Also an interesting connection between index coding problem
and interference alignment technique has been appeared in
[15].

In this work, we focus on the index coding problems
that can be represented by a side information graph (defined
in Section II), i.e., user demands are distinct and there is
exactly one receiver for each message. For this case we
consider the framework for studying the index coding problem
that uses ideas from graph homomorphism. More precisely,
it is known that the minimum linear broadcast rate of an
index coding problem of a graph G over a finite field Fq ,
denoted by lindq(G), can be upper bounded by the minimum
broadcast rate of another index coding problem if there exists
a homomorphism from the (directed) complement of the side
information graph of the first problem to that of the second
problem [4].

Conversely, for every positive integer k and prime power q,
there exits a digraph Hq

k such that lindq(Hq
k) is equal to k

and the complement of any digraph whose q-arry linear index
is at most k is homomorphic to Hq

k , see [4]. The set of the
graphs Hq

k is analogous to the “graph family Gk” defined in
[2] for studying a parameter of the graph called minrank. In
contrast to those graphs, Hq

k are defined for arbitrary finite
fields and more importantly, they can be utilised to study the
linear index code even if the graphs of interest are directed.

In this paper, we first study the structure of the digraphs Hq
k

defined in [4]. Analogous to the result of [2] about undirected
graphs, we prove that Hq

k’s are vertex transitive digraphs.
Using this, and by applying a lemma of Hell and Nesetril
[5], we derive a class of necessary conditions for digraphs G
to satisfy lindq(G) ≤ k.

In particular, we conclude that if lindq(G) ≤ k then |G|
ω(G) ≤

|Hq
k |

ω(Hq
k)

in which |G| and ω(G) stand for the number of vertices
and the clique number of G, respectively. We find a lower
bound on ω(Hq

k) for every prime power q and every integer
k. Therefrom we get a new lower bound for lindq(G). We use
the same technique to obtain other lower bounds on lindq(G)
in terms of certain graph theoretic parameters of G and also
the underlying field size q.

Our next result is about the computational complexity of
scalar linear index of a digraph. It is known that the deciding
whether the scalar linear index of a undirected graph is equal978-1-4799-6773-5/14/$31.00 c©2014 IEEE



to k or not is NP-complete for k ≥ 3 and is polynomially
decidable for k = 1, 2 [3]. For digraphs, it is shown in [6]
that for the binary alphabet, the decision problem for k = 2
is NP-complete. We use graph homomorphism framework to
extend this result to arbitrary alphabet.

The remainder of this paper is organised as follows. In
Section II we introduce notation, some preliminary concepts
about graph homomorphism and give an overview of the
previous results about the connection between linear index
coding and graph homomorphism. In Section III we review
one of the previous result about an equivalent formulation for
the scalar linear index coding problem. The main results of this
paper and their proofs are presented in Section IV. Finally, the
paper is concluded in Section V.

II. NOTATION AND PROBLEM STATEMENT

A. Notation and Preliminaries

For convenience, we use [m : n] to denote for the set
of natural numbers {m, . . . , n}. Let x1, . . . , xn be a set of
variables. Then for any subset A ⊆ [1 : n] we define
xA , (xi : i ∈ A).

All of the vectors are column vectors unless otherwise
stated. The inner product of two vectors v and w is denoted by
〈v, w〉. If A is a matrix, we use [A]j to denote its jth column.
We use ei ∈ Fk

q to denote for a vector which has one at ith
position and zero elsewhere.

A directed graph (digraph) G is represented by G(V,E)
where V is the set of vertices and E ⊆ (V × V ) is the set
of edges. For v ∈ V (G) we denote by N+

G (v) as the set of
outgoing neighbours of v, i.e., N+

G (v) = {u ∈ V : (v, u) ∈
E(G)}. For a digraph G we use G to denote for its directional
complement, i.e., (u, v) ∈ E(G) iff (u, v) /∈ E(G).

A vertex coloring (coloring for short) of a graph (digraph) G
is an assignment of colors to the vertices of G such that there
is no edge between the vertices of the same color. A coloring
that uses k colors is called a k-coloring. The minimum k such
that a k-coloring exists for G is called the chromatic umber.

The clique number of a graph (digraph) is defined as the
maximum size of a subset of the vertices such that each
element of the subset is connected to every other vertex in the
subset by an edge (directed edge). Notice that for the directed
case, between any two vertices of the subset there must be
two edges in opposite directions.

The independence number of a graph G, is the size of the
largest independent1 set and is denoted by α(G). For both
directed and undirected graphs, it holds that α(G) = ω(G).

Definition 1 (Homomorphism, see [5]). Let G and H be
any two digraphs. A homomorphism from G to H , written
as φ : G 7→ H is a mapping φ : V (G) 7→ V (H) such that
(φ(u), φ(v)) ∈ E(H) whenever (u, v) ∈ E(G). If there exists
a homomorphism from G to H we write G→ H , and if there
is no such homomorphism we shall write G 9 H . In the
former case we say that G is homomorphic to H . We write

1An independent set of a graph G is a subset of the vertices such that no
two vertices in the subset represent an edge of G.

Hom(G,H) to denote for the set of all homomorphism from
G to H .

Definition 2. On the set of all loop-less digraphs G, we define
the partial pre order “4” as follows. For every pair of G,H ∈
G, G 4 H if and only if there exists a homomorphism φ :
G 7→ H . It is straightforward to see that “4” is reflexive and
transitive. Moreover, if G 4 H and H 4 G, then the digraphs
G and H are homomorphically equivalent (i.e., G→ H and
H → G). In this case we write G ∼ H .

Definition 3. Let D ⊆ G be an arbitrary set of digraphs. A
mapping h : D 7→ R is called increasing over D if for every
G,H ∈ D such that G 4 H then h(G) ≤ h(H).

B. Problem Statement

Consider the communication problem where a transmitter
aims to communicate a set of m messages x1, . . . , xm ∈ X to
m receivers by broadcasting k symbols y1, . . . , yk ∈ Y , over a
public noiseless channel. We assume that for each j ∈ [1 : m],
the jth receiver has access to the side information xAj

, i.e.,
a subset Aj ⊆ [1 : m] \ {j} of messages. Each receiver j
intends to recover xj from (y1, . . . , yk, xAj ).

This problem, which is a basic setting of the index cod-
ing problem, can be represented by a directed side infor-
mation graph G(V,E) where V represents the set of re-
ceivers/messages and there is an edge from node vi to vj , i.e.,
(vi, vj) ∈ E, if the ith receiver has xj as side information.
An index coding problem, as defined above, is completely
characterized by the side information sets Aj .

In the following definitions, we formally define validity of
an index code and some other basic concepts in index coding
(see also [8], [11], and [16]).

Definition 4 (Valid Index Code). A valid index code for G
over an alphabet X is a set (Φ, {Ψi}mi=1) consisting of: (i)
an encoding function Φ : Xm 7→ Yk which maps m source
messages to a transmitted sequence of length k of symbols
from Y; (ii) a set of m decoding functions Ψi such that for
each i ∈ [1 : m] we have Ψi(Φ(x1, . . . , xm), xAi) = xi.

Definition 5. Let G be a digraph, and X and Y are the source
and the message alphabets, respectively.
(i) The “broadcast rate” of an index code (Φ, {Ψi}) is defined
as indX (G,Φ, {Ψi}) , k log |Y|

log |X | .
(ii) The “index” of G over X , denoted by indX (G), is defined
as

indX (G) = inf
Φ,{Ψi}

indX (G,Φ, {Ψi}).

(iii) If X = Y = Fq (the q-element finite field for some prime
power q), the “scalar linear index” of G, denoted by lindq(G)
is defined as lindq(G) , infΦ,{Ψi} indFq (G,Φ, {Ψi}) in
which the infimum is taken over the coding functions of the
form Φ = (Φ1, . . . ,Φk) and each Φi is a linear combination
of xj’s with coefficients from Fq .
(iv) If X = F`

q and Y = Fq , the vector linear
index for G, denoted by

−−→
lindq`(G) is defined as

−−→
lindq`(G) , infΦ,{Ψi} indF`

q
(G,Φ, {Ψi}) where the infimum



is taken over all coding functions Φ = (Φ1, . . . ,Φk) such
that Φi : F`m

q 7→ Fq are Fq-linear functions.
(v) The “minimum broadcast rate” of the index
coding problem of G is defined as ind(G) ,
infX infΦ,{Ψi} indX (G,Φ, {Ψi}).

C. Index Coding via Graph Homomorphism

For the sake of completeness, here in this section, we briefly
review the connection of index coding problem and graph
homomorphism.

Consider two different instances of the index coding prob-
lem. It is shown in [4] that if there exists a homomorphism
from the complement of the side information graph of the first
problem to that of the second one, then one can translate an
index code of the later problem to an index code for the former
one. In particular, for the linear scalar index coding problem,
one can state the following result.

Theorem 1 (see [4, Corollary 1]). Consider two instances
of the index coding problems over the digraphs G and H . If
G 4 H then we have

lindq(G) ≤ lindq(H).

In other words, the function lindq(·) is a non-decreasing
function on the pre order set (G,4).

For the case of linear scalar, it is shown in [4] that the
opposite direction also holds. Namely, it is shown that for
every positive integer k and prime power q, there exits a
digraph Hq

k such that the q-arry linear index of Hq
k is at most k

and the complement of any digraph whose q-arry linear index
is also at most k is homomorph to Hq

k .
The results of this paper are based on the properties of Hq

k’s
and use [4, Theorem 2] as the main tool (see also [19]). So,
we will explain the structure of Hq

k and state the theorem in
the next section.

III. AN EQUIVALENT FORMULATION FOR LINEAR SCALAR
INDEX CODING PROBLEM

In order to explain the structure of Hq
k we need the

following definitions:

Definition 6. A non-zero vector a ∈ Fk
q is called normal if its

first non-zero element is equal to 1, i.e.,

a = (0, . . . , 0, 1, ?, . . . , ?)>.

Definition 7. For a ∈ Fk
q we define Υ(a) to be the normal-

ization of a, namely, Υ(a) , λa for some non-zero λ ∈ Fq

such that λa is normal.

Construction 1 (Graph Hq
k). For every positive integer k

and prime power q, let V be the set of all normal vectors
in Fk

q . We define the set W to be

W = {(v, w) | v, w ∈ V and 〈v, w〉 6= 0} .

w3(a2, a3) w2 (a1, a3)

w4

(a2, a2)

w5(a3, a2)

w1

(a1, a1)

w6 (a3, a1)

Fig. 1. The digraph H2
2 consists of 6 vertices. The graph vertices are labelled

by pair of vectors a1 = [0 1]>, a2 = [1 0]>, and a3 = [1 1]>.

Now, we construct graph Hq
k as follows. The vertex

set of Hq
k is V (Hq

k) = W and
(
(v, w), (v′, w′)

)
∈

E(Hq
k) if and only if 〈v, w′〉 6= 0. In other

words,
(
(v, w), (v′, w′)

)
∈ E(Hq

k) if and only if
(v, w), (v′, w′) ∈ W and 〈v, w′〉 = 0. This construction
leads to a graph of size |V (Hq

k)| = qk−1
q−1 q

k−1 which is
regular with in/out degree q2(k−1) − 1.

As an example, H2
2 is depicted in Figure 1.

Before we state the main tool of this paper, namely Theorem
2, we need the following definition:

Definition 8. A family of graphs {Gk}∞k=1 is called q-
index code defining (q-ICD) if and only if for every (side
information) digraph G we have

lindq(G) ≤ k ⇐⇒ G 4 Gk.

It is not difficult to see that if {Gk}∞k=1 is a q-ICD, so is
the family {G′k}∞k=1 where Gk and G′k are homomorphically
equivalent. In particular, if {Gk}∞k=1 is a q-ICD in which no
Gk can be replaced with a smaller digraph, then Gk’s are cores
and conversely, if {Gk}∞k=1 is a q-ICD, {Core(Gk)}∞k=1 is the
unique smallest q-ICD, up to isomorphism2.

Theorem 2 (see [19]). For every prime power q, the family
{Hq

k}∞k=1 as introduced above, is q-ICD.

IV. MAIN RESULTS

The main results of this paper are presented in this section.
First, we study the properties of digraphs Hq

k . Base on these
properties and by applying Theorem 2, we derive two classes
of lower bounds for the scalar linear index of a digraph.
Finally, some computational complexity results about lindq(·)
are presented.

A. Properties of digraph Hq
k

In this section, we state some properties of the graph family
{Hq

k}∞k=1.

2For the definition of core of a graph, see [5, Chapter 1.6].



Lemma 1. For every k ∈ Z+ and prime power q, digraph
Hq

k is vertex-transitive3.

Proof. From the definition of vertex transitivity, it is enough
to show that for every arbitrary vertex (d, e) ∈ V (Hq

k), there
exists an automorphism φ ∈ Aut(Hq

k) such that φ(d, e) =
(e1, e1) where e1 = [1 0 · · · 0]> ∈ Fk

q . Let {ξ1, . . . , ξk−1}
be a basis for the orthogonal complement of vector d, i.e.,
〈d, ξi〉 = 0. Since (d, e) ∈ V (Hq

k) it holds that 〈d, e〉 6= 0 and
hence e /∈ Span(ξ1, . . . , ξk−1). Thus, {ξ1, . . . , ξk−1, d} forms
a basis for Fk

q . Define the k × k invertible matrix

X = [e ξ1 · · · ξk−1].

Notice that X>d = 〈e, d〉 e1 and consequently Υ(X>d) = e1.
Also, notice that Xe1 = e and since X is invertible we can
write X−1e = e1. Define the function φ : V (Hq

k) 7→ V (Hq
k)

as φ(u, v) = (Υ(X>u),Υ(X−1v)). Since (X>u)>(X−1v) =
〈u, v〉 6= 0, we conclude that φ(u, v) is indeed an ele-
ment of V (Hq

k). Last, we need to show that for each edge(
(u, v), (u′, v′)

)
, the image under φ is also an edge. If(

(u, v), (u′, v′)
)

is an edge in Hq
k then 〈u, v′〉 = u>v′ 6= 0.

Thus, (X>u)>(X−1v′) =
〈
X>u,X−1v′

〉
6= 0 and therefore(

φ(u, v), φ(u′, v′)
)

is an edge.

Obviously, as a result of Lemma 1, we have the following
corollary.

Corollary 1. Digraph Hq
k is also vertex transitive.

Lemma 2. The chromatic number of the complement of Hq
k

can be upper bounded as χ(Hq
k) ≤ qk−1

q−1 .

Proof. To proof the assertion of lemma, we show that there
exists a colouring of size (qk − 1)/(q− 1) for Hq

k . In fact we
show that the vectors d ∈ V assigned to each vertex of Hq

k are
a candidate for such a colouring (see Construction 1). First,
notice that there are at most (qk − 1)/(q− 1) of such vectors
(colours). Then we need to show that this assignment leads to
a proper colouring of Hq

k . To this end, consider two vertices
(d, e), (d, e′) ∈ V (Hq

k) which have the same colour d. From
Construction 1, we know that 〈d, e〉 6= 0 and 〈d, e′〉 6= 0.
However, the above relations mean that there is no edge in
E(Hq

k) from (d, e) to (d, e′) and vice versa. This completes
the proof of lemma.

Lemma 3. The clique number of Hq
k is lower bounded as

ω(Hq
k) = α(Hq

k) ≥ 1
4 (q2 − 1)qk−2.

Proof. Let g be a primitive element of the field Fq and define
the sets A and B as follows,

A =

{
(1, gi, 0, . . . , 0)> ∈ Fk

q : 0 ≤ i ≤ q − 3

2

}
∪ {e1}

3A (di)graph H is said to be vertex-transitive if for any vertices u, v of H
some automorphisms of H (i.e., a bijective homomorphism of H to H) takes
u to v (e.g., see [5, Chapter 1, p.14]).

and

B =

{
(1, a2, . . . , ak)> ∈ Fk

q : a2 /∈
{
− g1, . . . ,−g

q−1
2

}
,

a3, . . . , ak ∈ Fq

}
.

Notice that |A| = q+1
2 and |B| = q−1

2 qk−2 and also for every
v ∈ A and w ∈ B, 〈v, w〉 6= 0. Hence, A × B ⊆ V (Hq

k) is
an independent set of Hq

k of size (q2−1)
4 qk−2. Thus ω(Hq

k) =

α(Hq
k) ≥ (q2−1)

4 qk−2.

B. Lower Bounds

As a result of Theorem 2, we can prove the following
lemma.

Lemma 4. Suppose that h is an increasing function on (G,4)
and r is an upper bound on h(Hq

k). For every digraph G, if
h(G) > r then lindq(G) > k.

Proof. If lindq(G) ≤ k then by Theorem 2, G 4 Hq
k and

therefore h(G) ≤ h(Hq
k) ≤ r which is a contradiction.

Lemma 4 is a powerful tool to find lower bounds on the
scalar linear index of an index coding problem. Actually for
every increasing function h on (G,4) we have one lower
bound on the index coding problem. In the next theorem, using
Lemma 4, we provide an alternative proof for the known lower
bound on lindq(G) in terms of the chromatic number of G
[20].

Theorem 3. For every digraph G we have

lindq(G) ≥ logq

(
(q − 1)χ(G) + 1

)
.

Proof. The function h(G) = χ(G) is an increasing func-
tion on (G,4) (e.g., see [5, Corollary 1.8]). Suppose that
lindq(G) = k. Therefore, by Theorem 2, we have G 4 Hq

k .
Thus χ(G) ≤ χ(Hq

k) ≤ qk−1
q−1 where the last inequality follows

from Lemma 2. This completes the proof of theorem.

In the following we introduce another tool to find lower
bounds on lindq(G). Hell and Nesetril in [5, Proposition 1.22]
showed that if a graph H is vertex transitive and φ : G →
H is a homomorphism, then for every graph K we have
|G|

N(G,K) ≤
|H|

N(H,K) in which N(L,K) is the size of the
largest induced subgraph L′ of L such that there exists a
homomorphism from L′ to K. Even though this result is stated
for undirected graphs, its proof naturally extends to digraphs.
Therefore, using this result and Theorem 2 we can deduce the
following theorem.

Theorem 4. For every digraph G, if there exists a digraph
Ksuch that

|G|
N(G,K)

>
|Hq

k |
N(Hq

k ,K)

then lindq(G) ≥ k + 1.

Proof. We prove the theorem by contradiction. Suppose that
lindq(G) ≤ k. Then by Theorem 2, we have Hom(G,Hq

k) 6=



∅. Also by Corollary 1, Hq
k is a vertex transitive digraph. Now

we can apply the result of [5, Proposition 1.22] to conclude
that for every digraph K we have |G|

N(G,K)
≤ |Hq

k |
N(Hq

k ,K)
which

is a contradiction. Thus we are done.

An interesting special case of Theorem 4 is when K is a
complete graph with l vertices. In this case N(G,K) is equal
to the size of the largest l-colourable induced subgraph of G.
In particular the following corollary holds.

Corollary 2. For every digraph G if

|G|
ω(G)

>
4(qk − 1)q

(q2 − 1)(q − 1)

then lindq(G) ≥ k + 1. In other words we can state the
following lower bound

lindq(G) ≥ logq

[
1 +

(q2 − 1)(q − 1)

4q

|G|
ω(G)

]
.

Proof. In Theorem 4 set K to be K1. Then ω(G) = α(G) =
N(G,K1). Now Lemma 3 completes the proof.

Example 1. Let G be a directed graph with n vertices so that
for every pair (i, j) of the vertices either (i, j) ∈ E(G) or
(j, i) ∈ E(G) but not both. In this case, α(G) = ω(G) = 1.
The lower bound derived from Corollary 2 is

lindq(G) ≥ logq

[
1 +

(q2 − 1)(q − 1)

4q
n

]
.

This lower bound is slightly better than the lower bound
obtained from Theorem 3 and is significantly stronger that
the trivial bound lindq(G) ≥ α(G).

Another special case is when K is equal to the complete
undirected graph on l ≥ 2 vertices, i.e. K = Kl. In this
case, N(G,K) is the size of the largest l-colorable induced
subgraph of G. For example, N(G,K2) is the size of the
largest induced bipartite of G. For these choices of K, we are
able to find a lower bound on N(Hq

k ,K) and therefore we are
able to find an upper bound on |G|

N(G,K)
.

The idea of finding a large induced subgraph of Hq
k that is

l-colorable is similar to that of finding a large independent set
in Hq

k ,K. Formally we have the following result:

Lemma 5. let 1 < l < k − 1 be a positive integer number.
Then

N(Hq
k ,Kl) ≥

l∑
i=1

1

4
(q2 − 1)(qk−1−i)

=
1

4
(q + 1)(ql − 1)(qk−l−1).

Proof. Similar to the proof of Lemma 3, Let g be a primitive
element of the field Fq and for every j = 1, 2, . . . , l define the
sets Aj and Bj as follows,

Aj =

{
(0, 0, . . . , 0, 1, gi, 0, . . . , 0)> ∈ Fk

q : 0 ≤ i ≤ q − 3

2

}
∪ {ej}

in which the number of the leading zeros are equal to j − 1
and

Bj =

{
(0, 0, . . . , 0, 1, aj+1, . . . , ak)> ∈ Fk

q :

aj+1 /∈
{
− g1, . . . ,−g

q−1
2

}
, aj+2, . . . , ak ∈ Fq

}
.

Notice that |Aj | = q+1
2 and |Bj | = q−1

2 qk−j−1 and also
for every v ∈ Aj and w ∈ Bj , 〈v, w〉 6= 0. Hence,
Aj × Bj ⊆ V (Hq

k) are disjoint independent sets of Hq
k of

size (q2−1)
4 qk−j−1. The union of Vj = Aj ×Bj together with

the edges between different Vi’s form an l-colorable induced
subgraph of Hq

k of desired size.

Corollary 3. For every digraph G, if lindq(G) = k and l <
k − 1 then

|G|
N(G,Kl)

≤ 4ql(qk − 1)

(q2 − 1)(ql − 1)
.

Equivalently,

lindq(G) ≥ logq

[
1 +

(q2 − 1)(ql − 1)

4ql
|G|

N(G,Kl)

]
.

The proof of the previous Corollary is very similar to that
of Corollary 2.

C. Computational Complexity of lindq(·)
By applying the result of [21] that proves the conjecture

[5, Conjecture 5.16] and using Theorem 2, we show that the
decision problem of lindq(G) ≤ k is NP-complete for k ≥ 2.

First, let us state the following theorem.

Theorem 5 (see [21] and [5, Conjecture 5.16]). Suppose that
H is a digraph with no vertex of in degree or out degree one.
If core of H is not a directed cycle the following decision
problem is NP-complete.

Input: A digraph G
Output: If hom(G,H) 6= ∅ then return “yes,” else

return “no.”

We will apply Theorem 5 to digraphs Hq
k for every k ≥ 2.

Theorem 6. For every finite field Fq and every k ≥ 2 the
following decision problem is NP-complete.

Input: A digraph G
Output: If lindq(G) ≤ k return “yes,” otherwise

return “no.”

Proof. Based on Theorem 2 and Theorem 5, it is sufficient to
show that Hq

k has no vertex of in/out degree one and also its
core is not a directed cycle. From Construction 1 we know
that for k ≥ 2, Hq

k has no source or sink. It remains to show



(e2, e1 − e2)

(e1 + e2, e2)(e1, e1)

(e2, e2)

Fig. 2. The induced subgraph D of Hq
k which is used in the proof of

Theorem 6 to show that the core of Hq
k cannot be a directed cycle.

that the core of Hq
k for any prime power q and any integer k,

is not a directed cycle.
To this end, consider the subgraph D of Hq

k depicted in
Figure 2. Clearly from this induced subgraph D there is no
homomorphism to any directed cycle. Thus the core of Hq

k

cannot be a directed cycle.

Notice that the NP-completeness of the decision problem
lindq(G) ≤ k was known for q = 2 and k ≥ 3, see [2], [3].
In fact this decision problem is NP-complete even when G is
an undirected graph [3]. However, for undirected graphs, the
decision problem lindq(G) ≤ 2 is polynomially solvable since
for undirected graphs we have lindq(G) ≤ 2 if and only if G
is complement of a bipartite graph. Theorem 6 shows that for
digraphs, even the decision problem lindq(G) ≤ 2 is hard.

V. CONCLUSION

It is previously shown that scalar linear index of a digraph
G over Fq is less than ot equal to k if there exists a graph
homomorphism from the complement of G to the complement
of certain graphs denoted by Hq

k [4] (see also [2] for the
special case of undirected graphs and F2).

In this work, we investigated the structure and properties
of digraphs Hq

k . In particular, similar to the result of [2]
for undirected graphs, we show that Hq

k are vertex transitive.
Using this, and by applying a result from Hell and Nesetril
[5], we derive a class of necessary conditions for digraph G
to satisfy lindq(G) ≤ k.

Based on the structure of graphs Hq
k , our next result is about

the computational complexity of lindq(G). It is known that
the deciding whether the scalar linear index of a undirected
graph is equal to k or not is NP-complete for k ≥ 3 and is
polynomially decidable for k = 1, 2 [3]. However, using the
graph homomorphism framework, we show that this decision
problem is NP-complete even for k = 2 if we consider
digraphs.
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