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Abstract—We consider a group of m+1 trusted nodes that aim
to create a shared secret key K over a network in the presence
of a passive eavesdropper, Eve. We assume a linear non-coherent
network coding broadcast channel (over a finite field Fq) from
one of the honest nodes (i.e., Alice) to the rest of them including
Eve. All of the trusted nodes can also discuss over a cost-free
public channel which is also overheard by Eve.

For this setup, we propose upper and lower bounds for the
secret key generation capacity assuming that the field size q
is very large. For the case of two trusted terminals (m = 1)
our upper and lower bounds match and we have complete
characterization for the secrecy capacity in the large field size
regime.

I. INTRODUCTION

For communication over a network performing linear net-
work coding, Cai and Yeung [1] introduced the problem of

securing a multicast transmission against an eavesdropper. In

particular, consider a network implementing linear network
coding over a finite field Fq. Let us assume that the min-

cut value from the source to each receiver is c. From the

main theorem of network coding [2], [3] we know that a
source can send information at rate equal to the min-cut c

to the destinations, in the absence of any malicious eaves-
dropper. Now, suppose there is a passive eavesdropper, Eve,

who overhears ρ arbitrary edges in the network. The secure
network coding problem is to design a coding scheme such
that Eve does not obtain any information about the messages

transmitted from the source to destinations. Cai and Yeung [1]

showed that the secrecy capacity for this problem is c−ρ and
can be achieved if the field size q is sufficiently large. Later

this problem formulation has been investigated in many other
works. Feldman et al. [4] showed that by sacrificing a small

amount of rate, one might find a secure scheme that requires

much smaller field size. Rouayheb et al. [5] observed that this
problem can be considered as a generalization of the Ozarow-

Wyner wiretap channel of type II. Silva et al. [6] proposed

a universal coding scheme that only employs encoding at the
source.

In contrast to the previous work, in this paper we study

the problem of secret key sharing among multiple terminals
when nodes can send feedback over a public channel. We

consider a source multicasting information over a network
at rate equal to the min-cut c to the destinations. We also

assume that the relay nodes in the network perform linear

randomized network coding which is modeled by a non-

coherent transmission scheme. Motivated by [7], [8], we model
a non-coherent network coding scenario by a multiplicative

matrix channel over a finite field Fq with uniform and i.i.d.

distribution over transfer matrices in every time-slot.

The problem of key agreement between a set of terminals

with access to noisy broadcast channel and public discussion

channel (visible to the eavesdropper) was studied in [9], where
some achievable secrecy rates were established, assuming Eve

does not have access to the noisy broadcast transmissions. This

was generalized in [10], [11] by developing (non-computable)
outer bounds for secrecy rates. However, to the best of our

knowledge, ours is the first work to consider multi-terminal
secret key agreement over networks employing randomized

network coding, when a passive eavesdropper has access to

the broadcast transmissions.

Our contributions in this paper are as follows. For the

secret key sharing problem introduced above, we propose an

asymptotic achievability scheme assuming that the field size q

is large. This scheme is based on subspace coding and can be

extended for arbitrary number of terminals. Using the result

of [9], we derive an upper bound for this problem. For m = 1,
the proposed lower bound matches the upper bound and the

secret key generation capacity is characterized. However, for
m ≥ 2, depending on the channel parameters, the upper and

lower bound might match or not.

The paper is organized as follows. In §II we introduce
our notation and the problem formulation and present some

preliminaries. In §III, we state a general upper bound for the

key generation capacity and evaluate it for the non-coherent
network coding broadcast channel. The main results of the

paper are presented in §IV.

II. NOTATION AND SETUP

A. Notation

We use 〈X〉 to denote the row span of a matrix X . We use
also [i : j] to denote {i, i+ 1, . . . , j} where i, j ∈ Z.

Let Π be an arbitrary vector space of finite dimension

defined over a finite field Fq. Suppose Π1 and Π2 are two
subspaces of Π, i.e., Π1 � Π and Π2 � Π. We use Π1∩Π2 to

denote the common subspaces of both Π1 and Π2 and Π1+Π2

as the smallest subspace that contains both Π1 and Π2. Two

subspaces Π1 and Π2 are called orthogonal if Π1∩Π2 = {0}.
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Two subspaces Π1 and Π2 of Π are called complementary if
they are orthogonal and Π1 +Π2 = Π.

Now, consider two subspaces Π1 and Π2. We define the

subtraction of Π2 from Π1 by U = Π1 \s Π2 where U is any

subspace of Π1 which is complementary with Π1 ∩Π2. Note
that, given Π1 and Π2, U is not uniquely defined.

For notational convenience, when J is a set, by ΠJ we

mean ΠJ � ∩i∈JΠi.

B. Preliminaries

Definition 1. We define S(�, k) to be the set of all subspaces
of dimension at most k in the �-dimensional space F�

q.

Definition 2 (see [7]). We denote by ξ(n, d) the number of
different n × � matrices with elements from a finite field Fq,
such that their rows span a specific subspace πd � F�

q of
dimension d where 0 ≤ d ≤ min[n, �]. By using [7, Lemma 2],
ξ(n, d) does not depend on � and depends on πd only through
its dimension d.

Lemma 1. Suppose that k subspaces Π1, . . . ,Πk, with di-
mensions d1, . . . , dk, are chosen uniformly at random from
Fn
q . Then w.h.p. (with high probability)1 we have

dim (Π1 + · · ·+Πk) = min [d1 + · · ·+ dk, n] , and

dim (Π1 ∩ · · · ∩ Πk) = [d1 + · · ·+ dk − (k − 1)n]
+
.

Note that even if one of the subspaces, for example Π1, is a
fixed subspace, then the above results are still valid.

Proof: These results follow from [12, Corollary 1] by
using induction on the number of subspaces.

C. Problem Statement

We consider a set of m+1 ≥ 2 honest nodes, T0, . . . ,Tm,

(T stands for “terminal”) that aim to share a secret key K
among themselves while keeping it concealed from a passive

adversary, Eve. Eve does not perform any transmissions, but is
trying to eavesdrop on (overhear) the communications between

the honest nodes. For convenience, sometimes we will refer to

node T0,T1,T2, . . . , as “Alice,” “Bob,” “Calvin,” and so on.
We assume that there exists a non-coherent network coding

broadcast channel (which is going to be defined more precisely

in the following) from Alice to the other terminals (including

Eve). Also we assume that the legitimate terminals can pub-
licly discuss over a noiseless rate unlimited public channel.

Consider a non-coherent linear network coding communi-

cation scenario where at every time-slot t Alice (terminal T0)
injects a set of nA vectors (packets) of length � (over some

finite field Fq) into the network, denoted by the row vectors

of the matrix XA[t] ∈ FnA×�
q . Each terminal Ti receives

ni randomly chosen linear combinations of the transmitted

vectors, namely for r ∈ {1, . . . ,m,E}, we have2

Xr[t] = Fr [t]XA[t], (1)

1During the paper by “high probability” we mean probability of order 1−
O(q−1) unless otherwise stated.

2As subscript, we use i to denote for Ti for all i ∈ [0 : m]. At some
points, we also use XA, XB, XC, etc., to denote for X0, X1, X2, etc.

where Fr[t] ∈ Fnr×nA

q is chosen uniformly at random among
all possible matrices and independently for each receiver and

every time-slot. So for the channel transition probability we

can write

PX1···XmXE|XA
(x1, . . . , xm, xE|xA) =

PXE|XA
(xE|xA)

m∏
i=1

PXi|XA
(xi|xA), (2)

where for each r ∈ {1, . . . ,m,E} we have (see [7, Sec IV-A])

PXr |XA
(xr |xA) �

{
q−nr dim(xA) if 〈xr〉 � 〈xA〉 ,
0 otherwise.

Note that in this setup we do not assume any CSI3 at the

transmitter or receivers.

In order to define the secrecy capacity, we use [13, Defini-
tion 1] and [13, Definition 2] (see also [14], [15], [9], [11]).

III. UPPER BOUND

A. Secrecy Upper Bound for Independent Broadcast Channels

The secret key generation capacity among multiple termi-

nals (without eavesdropper having access to the broadcast

channel) is completely characterized in [9]. By using this
result, it is possible to state an upper bound for the secrecy

capacity of the key generation problem among multiple termi-

nals where the eavesdropper has also access to the broadcast
channel. This can be done by adding a dummy terminal to the

first problem and giving all the eavesdropper’s information to
this dummy node and let it to participate in the key generation

protocol. By doing so, the secret key generation rate does

not decrease. Hence by combining [9, Theorem 4.1] and [9,
Lemma 5.1], the following result can be stated.

Theorem 1. The secret key generation capacity is upper
bounded as follows

Cs ≤

max
PX0

min
λ∈Λ([0:m])

⎡
⎣H(X[0:m]|XE)−

∑
B�[0:m]

λBH(XB|XBc , XE)

⎤
⎦ ,

where Λ([0 : m]) is the set of all collections λ =
{λB : B � [0 : m], B 	= ∅} of weights 0 ≤ λB ≤ 1, satisfying∑

B�[0:m],i∈B

λB = 1, ∀i ∈ [0 : m].

Note that in the above expression for the upper bound, it is
possible to change the order of maximization and minimization
[9, Theorem 4.1].

Now, for our problem where the channel from Alice to the
other terminals are assumed to be independent, we can further

simplify the upper bound given in Theorem 1, as stated in

Corollary 1.

Corollary 1. If the channels from Alice to the other terminals
are independent, as described in (2), then the upper bound

3Channel state information.
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stated in Theorem 1, for the secret key generation capacity is
simplified to

Cs ≤ max
PX0

min
j∈[1:m]

I(X0;Xj |XE) (3)

≤ min
j∈[1:m]

max
PX0

I(X0;Xj |XE). (4)

Proof: For the proof please refer to [16].

Remark: Note that (3) is the best upper bound one might hope

for an independent broadcast channel using results of [9].

Remark: Using [14, Theorem 7] or [15, Theorem 2], we

observe that the bound given in (4) is indeed tight for the

two terminals problem where we have the Markov chains
XB ↔ XA ↔ XE (when the channels are independent) or

XA ↔ XB ↔ XE (when the channels are degraded).

B. Upper Bound for Non-coherent Channel

In the previous section, we have shown that the secret key

generation rate for our problem can be upper bounded by (4).

Now, we need to evaluate the above upper bound for the non-
coherent network coding channel defined in §II-C.

Lemma 2. For the joint distribution of the form

PXAXiXE
(xA, xi, xE) = PXA

(xA)PXi|XA
(xi|xA)PXE|XA

(xE|xA)

the mutual information I(XA;Xi|XE) is a concave function
of PXA

(xA) for fixed PXi|XA
(xi|xA) and PXE|XA

(xE|xA).

Proof: For the proof please refer to [16].

Similar to [7, Definition 5], here we define an equivalent
subspace broadcast channel from Alice (terminal T0) to the

rest of terminals as follows. We assume that Alice sends a

subspace ΠA ∈ S(�, nA) where ΠA = 〈XA〉 and each of the
legitimate terminals receives Πi ∈ S(�, ni) and Eve receives

ΠE ∈ S(�, nE) where Πi = 〈Xi〉 and ΠE = 〈XE〉, respectively.
The channel transition probabilities are independent and for

each receiver i is defined as follows

PΠi|ΠA
(πi|πA) �

{
ξ
(
ni, dim(πi)

)
q−ni dim(πA) if πi � πA,

0 otherwise,

where the function ξ is defined in Definition 2.

Lemma 3. For every input distribution PXA
there exists an in-

put distribution PΠA
such that I(XA;Xi|XE) = I(ΠA; Πi|ΠE)

and vice-versa.

Proof: For the proof please refer to [16].

So by Lemma 3, in order to maximize I(XA;Xi|XE) with
respect to PXA

it is sufficient to solve an equivalent problem,

i.e., maximize I(ΠA; Πi|ΠE) with respect to PΠA
; which is

seemingly a simpler optimization problem.

Lemma 4. The input distribution that maximizes
I(ΠA; Πi|ΠE) is the one which is uniform over all subspaces
having the same dimension.

Proof: By the concavity of I(ΠA; Πi|ΠE) with respect

to PΠA
, that is stated in Lemma 2, the proof follows by an

argument very similar to [7, Lemma 8].

Lemma 5. Asymptotically in the field size, we have

max
PX

A

I(XA;Xi|XE) = max
PΠ

A

I(ΠA; Πi|ΠE) =

(min[nA, ni + nE]− nE) (�−min[nA, ni + nE]) log q.

Proof: For the proof refer to [16].

Thus, by using the upper bound given in (4) and Lemma 5

we have the following result for the upper bound on the secret

key generation rate, as stated in Theorem 2.

Theorem 2. The secret key generation rate in a non-coherent
network coding scenario, which is defined in §II-C, is asymp-
totically (in the field size) upper bounded by

Cs ≤

min
i∈[1:m]

[
(min[nA, ni + nE]− nE) (�−min[nA, ni + nE])

]
log q.

Remark: Note that if nE = nA then the secret key generation

rate is zero because Eve is so powerful that she overhears all
of the transmitted information.

IV. ASYMPTOTIC ACHIEVABILITY SCHEME

Here in this section, we describe our achievability scheme

for the secret key sharing problem among multiple terminals
in a non-coherent network coding setup.

Without loss of generality, let us assume that4 nA < �.
Moreover, in this work we focus on the asymptotic regime

where the field size is large. Suppose that Alice broadcasts a

message XA[t] at time-slot t of the following form

XA[t] =
[
InA×nA

M [t]
]
, (5)

where M [t] ∈ F
nA×(�−nA)
q is a uniformly at random distributed

matrix. The rest of legitimate terminals and Eve receive a

linear transformed version of XA[t] according to the channel
introduced in (1).

For each terminal r ∈ {A, 1, . . . ,m,E}, we define the

subspace Πr � 〈Xr〉. Then, for every r 	= A we have
Πr � ΠA. Because of (5), after broadcasting XA[t], the

legitimate terminals learn the channel state and reveal the

channel transfer matrices Fr[t], r ∈ [1 : m], publicly over
the public channel. Thus Alice can also recover the subspaces

Πr for all of the legitimate terminals.

Now, for each non-empty subset J ⊆ [1 : m] of legitimate
receivers, let us define the subspace UJ as follows

UJ � ΠJ \s

(∑
i∈J c

ΠiJ +ΠEJ

)
, (6)

where ΠJ = ∩i∈JΠi, ΠiJ = Πi ∩ ΠJ , and ΠEJ = ΠE ∩
ΠJ . By definition, UJ is the common subspace among the
receivers in J which is orthogonal to all of the subspaces of

other terminals, i.e., it is orthogonal to Πi, i ∈ J c, and ΠE (see

also Fig. 1). Note that the subspaces UJ ’s are not uniquely
defined. However, from the definition of the operator “\s”, it

4If nA ≥ � then Alice can reduce the number of injected packets into the
network from nA to some smaller number n′

A
where n′

A
< �.
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can be easily shown that the dimension of each UJ is uniquely
determined and equal to

dim(UJ ) = dim(ΠJ )− dim

(∑
i∈J c

ΠiJ +ΠEJ

)
. (7)

If Alice had the subspace ΠE observed by Eve, she would
be able to construct subspaces UJ ’s; but she does not have ΠE.

However, because the subspaces Πi’s and ΠE are chosen inde-

pendently and uniformly at random from ΠA, and because the
field size q is large, Alice, by applying Lemma 1, can find the

dimension of each UJ w.h.p. Then it can be easily observed
that (e.g., see [12, Lemma 3]) if Alice chooses a uniformly

at random subspace of ΠJ with dimension dim(UJ ) then it

satisfies (6) w.h.p., so it can be a possible candidate for UJ .

Now, consider 2m−1 different non-empty subsets of [1 : m].
To each subset ∅ 	= J ⊆ [1 : m], we assign a parameter

θJ ≥ 0 such that the following set of inequalities hold,

θJ1
+ · · ·+ θJk

≤ dim (UJ1
+ · · ·+ UJk

+ΠE)− dim(ΠE), (8)

for any k ∈ [1 : 2(2
m−1) − 1] and any different selection

of subsets J1, . . . ,Jk. Note that the right hand side of the

inequalities defined in (8) depend on the actual choice of
subspaces UJ ’s. But, as described above, in the following we

assume that UJ ’s are chosen uniformly at random from ΠJ .

If Alice knows the subspace ΠE, then we can state the
following result.

Lemma 6. There exists subspaces U ′J � UJ such that
dim(U ′J ) = θJ for all ∅ 	= J ⊆ [1 : m], and U ′J ’s and
ΠE are orthogonal subspaces (i.e., dim(ΠE +

∑
i U

′
Ji
) =

dim(ΠE) +
∑

i θJi
) if and only if θJ ’s are non-negative

integers and satisfy (8).

Proof: The proof of this lemma is based on [17,
Lemma 4] and can be found in [16].

Fig.1 depicts pictorially the relation between subspaces

introduced in the above discussions.

Fig. 1. The relations between subspaces Π’s, U ’s, and U ′’s for the case of
m = 2.

Although in practice Alice only knows the dimension of ΠE

(w.h.p.), but still she can find subspaces U ′J � UJ such that
the result of Lemma 6 holds w.h.p., as stated in Lemma 7.

Lemma 7. Alice can find subspaces U ′J � UJ such that
dim(U ′J ) = θJ for all ∅ 	= J ⊆ [1 : m], and U ′J ’s
are orthogonal subspaces and U ′J ’s and ΠE are orthogonal

subspaces w.h.p., if and only if θJ ’s are non-negative integers
and satisfy (8).

Proof: For the proof refer to [16].

Then, we have the following result.

Theorem 3. The secret key sharing rate given by the solution
of the following convex optimization problem can be asymp-
totically (in the field size) achieved

maximize
[
minr∈[1:m]

∑
J�r θJ

]
(�− nA) log q

subject to θJ ≥ 0, ∀J ⊆ [1 : m], J 	= ∅, and
θJ1

+ · · ·+ θJk
≤

dim (UJ1
+ · · ·+ UJk

+ΠE)− dim(ΠE)
∀k, ∀J1, . . . ,Jk : ∅ 	= Ji ⊆ [1 : m],
Ji 	= Jj if i 	= j,

where for every J , UJ is chosen uniformly at random from
ΠJ with the dimension calculated by (7) under the assumption
that Π1, . . . ,Πm, and ΠE are selected independently and
uniformly at random from ΠA with dimensions n1, . . . , nm, nE.

Proof of Theorem 3: Let Alice use the broadcast channel
N times by sending matrices XA[1], . . . , XA[N ] of the form

(5). As mentioned before, in every time-slot t, each of the

legitimate terminals sends publicly the channel transfer matrix
it has received.

Then, let us define θ̂J � �NθJ � for all J and consider the
following set of inequalities

θ̂J1
+ · · ·+ θ̂Jk

+N dim(ΠE) ≤

dim

(
N⊕
t=1

UJ1
[t] + · · ·+

N⊕
t=1

UJk
[t] +

N⊕
t=1

ΠE[t]

)
, (9)

where “⊕” is the direct sum operator. Each of ÛJi
�⊕N

t=1 UJi
[t] is a subspace of an N × nA dimensional space⊕N

t=1 ΠA[t]. Similarly, we have Π̂E �
⊕N

t=1 ΠA[t] where

Π̂E �
⊕N

t=1 ΠE[t]. It can be easily seen that if the set of
inequalities (8) are satisfied then the set of inequalities (9) are

also satisfied.

Now, by using Lemma 7, Alice can find a set of orthogonal

subspaces Û ′J with dimension θ̂J (that are also orthogonal

to Π̂E w.h.p.). By applying Lemma 8 (appeared after this

theorem), one would observe that if Alice uses a basis of Û ′J
(θ̂J linear independent vectors from Û ′J ) to share a secret

key KJ with all terminals in J , then this key is secure from
Eve and all other legitimate terminals in J c w.h.p.Using each

key KJ , Alice can send a message of size θ̂J (� − nA) log q
secretly to the terminals in J . In order to share the key KJ ,

Alice sends publicly a set of coefficients for each terminal

in J so that each of them can construct the subspace ÛJ
from their own received subspace. Note that even having these

coefficients, Eve cannot recover any information regardingKJ
(for more discussion see [13]).

Up until now, the problem of sharing a key K among

legitimate terminals have been reduced to a multicast problem
where Alice would like to transmit a message (i.e., the shared

key K) to a set of terminal where the rth one has a min-cut
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∑
J�r θ̂J . From the main theorem of network coding (e.g., see

[2], [3], [18], [19]), we know that this problem can be solved

by performing linear network coding where the achievable rate

is as follows

Rs ≤

[
1

N
min

r∈[1:m]

∑
J�r

θ̂J

]
(�− nA) log q.

By increasing N , the achievable secrecy rate will be arbitrarily
close to Rs ≤

[
minr∈[1:m]

∑
J�r θJ

]
(� − nA) log q, and we

are done.

Lemma 8. Consider a set of nA packets denoted by the rows
of a matrix XA ∈ FnA×�

q of the form XA = [I M ], where

M ∼ Uni

(
F
nA×(�−nA)
q

)
. Assume that Eve has overheard nE

independent linear combinations of these packets, represented
by the rows of a matrix XE ∈ FnE×�

q . Then for every k packets
y1, . . . , yk that are linear combinations of the rows of XA, if
the subspace ΠY = 〈y1, . . . , yk〉 is orthogonal to 〈XE〉 we
have I(y1, . . . , yk;XE) = 0.

Proof: The proof is stated in [16, Appendix B].

A. Special Case: Achievability Scheme for Two Terminals

For simplicity and without loss of generality we assume

that nB ≤ nA and nE ≤ nA. The key generation scheme starts

by Alice broadcasting a message XA[t] at time t of the form
of (5). Then, Theorem 3 states that the secrecy rate Rs is

achievable if

Rs ≤ [dim(UB +ΠE)− dim(ΠE)] (�− nA) log q,

where UB = ΠB \s ΠE (for convenience we have replaced

U{B} with UB). Because UB ∩ ΠE = {0}, we have

Rs ≤ [dim(UB)] (�− nA) log q

= [dim(ΠB)− dim(ΠB ∩ ΠE)] (� − nA) log q

=
[
nB − (nB + nE − nA)

+
]
(�− nA) log q

= [min[nA, nB + nE]− nE] (�− nA) log q,

where this is the same as the upper bound given in Theorem 2.

This is obvious when nA ≤ nB + nE. On the other hand, if

nA > nB + nE, then Alice can reduce the number of injected
packets in every time-slot from nA to nB + nE (there is no

need to use more than nB + nE degrees of freedom).
Remark: Note that in the above scheme, as long as nE < nA,
the secrecy rate is non-zero.

Now, we compare the derived secrecy rate with the case

where no feedback is allowed. First let us assume that nB ≥
nE. Then, in the non-coherent network coding scenario intro-

duced in §II-C, it can be easily verified that the channel from

Alice to Eve is a stochastically degraded (for the definition
refer to [20, p. 373]) version of the channel from Alice to Bob.

So by applying the result of [21] or [22, Theorem 3], for

the secret key sharing capacity we can write

Cs = max
PX

A

[I(XA;XB)− I(XA;XE)]

=max
PΠ

A

[I(ΠA; ΠB)− I(ΠA; ΠE)] ,

where the sufficiency of optimization over subspaces follows
from a similar argument to [7, Theorem 1]. Similar to the

proof of Lemma 5, one can show that

Cs = [nB − nE]
+(�− nB) log q,

which is positive only if nB > nE. �

The above comparison demonstrates the amount of improve-

ment of the secret key generation rate we might gain by using
feedback.

B. Special Case: Achievability Scheme for Three Terminals

As an another example, here we consider the three trusted
terminals problem (i.e., m = 2). As before, we assume that

nA < � and for the convenience we suppose that nB = nC ≤
nA and nE ≤ nA.

In order to characterize the achievable secrecy rate, we need

to find the dimension of subspaces UB, UC, and UBC and their
sums (including ΠE as well). We assume that the field size

q is large and we know that ΠB, ΠC, and ΠE are chosen

uniformly at random from ΠA. Subspaces ΠBC and ΠBE are
also distributed independently and uniformly at random in ΠB.

Similarly, the same is true for ΠBC and ΠCE in ΠC. We have⎧⎨
⎩

UB � ΠB \s (ΠBC +ΠBE)

UC � ΠC \s (ΠBC +ΠCE)

UBC � ΠBC \s (ΠBCE),

so we can write

dim(UB) = dim(ΠB)− dim(ΠBC +ΠBE)
(a)
= dim(ΠB)−min [dim(ΠBC) + dim(ΠBE),dim(ΠB)]
(b)
= nB −min [dim(ΠBC) + dim(ΠBE), nB]

= [nB − dim(ΠBC)− dim(ΠBE)]
+

(c)
=

[
nB − (2nB − nA)

+ − (nB + nE − nA)
+]+ ,

where (a) follows from Lemma 1 because ΠBC and ΠBE are

chosen independently and uniformly at random from ΠB, (b)

is true because q is large, and (c) follows from Lemma 1.
Note that because we have assumed nB = nC it follows that

dim(UC) = dim(UB).
Similarly, for the dimension of UBC we can write

dim(UBC) = dim(ΠBC)− dim(ΠBCE)

= dim(ΠBC)− [dim(ΠBC) + nE − nA]
+

= min
[
nA − nE, (2nB − nA)

+
]
.

Proposition 1. From the construction, the subspaces UB, UC,
and UBC are orthogonal and similarly the same holds for UB,
UBC, and ΠE. Also UC, UBC, and ΠE are orthogonal w.h.p.

Now we may write the linear program stated in Theorem 3

as follows

maximize min [θB + θBC, θC + θBC] (�− nA) log q
subject to θB ≤ dim(UB +ΠE)− nE

θC ≤ dim(UC +ΠE)− nE

θBC ≤ dim(UBC +ΠE)− nE

θB + θC ≤ dim(UB + UC +ΠE)− nE

θB + θC + θBC ≤ dim(UB + UC + UBC +ΠE)− nE.
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Because of the symmetry in the problem (nB = nC), for the
optimal solution we should have θB = θC. Knowing this and

using Proposition 1, we may further simplify the above linear

program as follows

maximize [θB + θBC] (�− nA) log q

subject to θB ≤ 1
2
[dim(UB + UC +ΠE)− nE] � α1

θBC ≤ dim(UBC) � α2

2θB + θBC ≤ dim(UB + UC + UBC +ΠE)− nE � α3.

From the definitions of α’s, we can easily observe that, α3 ≥
2α1, α3 ≥ α2, and α3 ≤ 2α1 + α2. Hence, θB + θBC gets its

maximum at the point (θB, θBC) = (α3−α2

2 , α2). Thus, for the

maximum achievable secrecy rate we have

Rs =

[
α2 + α3

2

]
(�− nA) log q.

As mentioned before, we assume that subspaces UJ ’s are
chosen uniformly at random from ΠJ . So ΠE and UJ ’s are

independent and for α3 we can write

α3 = min[dim(UB) + dim(UC) + dim(UBC) + dim(ΠE), nA]− nE

= min[dim(UB) + dim(UC) + dim(UBC), nA − nE]

= min[2 dim(UB) + dim(UBC), nA − nE].

So for the secrecy rate (achievable asymptotically when q goes
to infinity) we have

Rs/(�− nA) log q =

min

[
dim(UB) + dim(UBC),

1

2
(nA + dim(UBC)− nE)

]
. (10)

Example 1. As an example, here we compare the achievable
secret key sharing rate among three legitimate terminals (i.e.,
m = 2) as derived in (10) with the upper bound stated in
Theorem 2. We consider two symmetric setup where for the
first one we have nA = 60, nB = nC = 15 (see Fig. 2(a))
and for the second one we have nA = 60, nB = nC = 45 (see
Fig. 2(b)). In each of these situations, we depict the upper and
lower bounds on the secret key generation rate as a function
of the number of packets (degrees of freedom) received by Eve.
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