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Abstract—We consider the problem of multicasting information
from a source to a set of receivers over a network where interme-
diate network nodes perform randomized linear network coding
operations on the source packets. We propose a channel model
for the noncoherent network coding introduced by Koetter and
Kschischang in [6], that captures the essence of such a network op-
eration, and calculate the capacity as a function of network param-
eters. We prove that use of subspace coding is optimal, and show
that, in some cases, the capacity-achieving distribution uses sub-
spaces of several dimensions, where the employed dimensions de-
pend on the packet length. This model and the results also allow us
to give guidelines on when subspace coding is beneficial for the pro-
posed model and by how much, in comparison to a coding vector
approach, from a capacity viewpoint. We extend our results to the
case of multiple source multicast that creates a virtual multiple ac-
cess channel.

Index Terms—Channel capacity, multisource multicast, network
coding, noncoherent communication, randomized network coding,
subspace coding.

I. INTRODUCTION

T HE network coding techniques for information trans-
mission in networks introduced in [1] have attracted

significant interest in the literature, both because of posing
theoretically interesting questions, as well as because of poten-
tial impact in applications. The first fundamental result proved
in network coding, and perhaps still the most useful from a
practical point of view today, is that, using linear network
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coding [2], [3], one can achieve rates up to the common min-cut
value when multicasting to receivers. In general this
may require operations over a field of size approximately ,
which translates to communication using packets of length

bits [4].
However, this result assumes that the receivers perfectly know

the operations that the network nodes perform. In large dynami-
cally changing networks, collecting network information comes
at a cost, as it consumes bandwidth that could instead have been
used for information transfer. In practical networks, where such
deterministic knowledge is not sustainable, the most popular ap-
proach is to perform randomized network coding [5] and to ap-
pend coding vectors at the headers of the packets to keep track of
the linear combinations of the source packets they contain (see,
e.g., [12]). The coding vectors have an overhead of
bits, where is the total number of packets to be linearly com-
bined. This results in a loss of information rate that can be sig-
nificant with respect to the min-cut value. In particular, for wire-
less sensor networks, where communication is restricted to short
packet lengths, the coding vector overhead can be a significant
fraction of the overall packet length [27], [13].

Use of coding vectors is akin to use of training symbols to
learn the transformation induced by a network. A different ap-
proach is to assume a noncoherent scenario for communica-
tion, as proposed in [6], where neither the source(s) nor the re-
ceiver(s) have any knowledge of the network topology or the
network nodes operations. Noncoherent communication allows
creation of end-to-end systems that are completely oblivious to
the network state. Several natural questions arise considering
this noncoherent framework: (i) what are the fundamental limits
on the rates that can be achieved in a network where the in-
termediate node operations are unknown; (ii) how can they be
achieved; and (iii) how do they compare to the coherent case.

In this paper, we address such questions for two different
cases. First, we consider the scenario where a single source aims
to transmit information to one or multiple receiver(s) over a
network under the noncoherence assumption using fixed packet
length. Because network nodes only perform linear operations,
the overall network behavior from the source(s) to a receiver
can be represented as a matrix multiplication of the transmitted
source packets. We consider operation in time-slots, and assume
that the channel transfer matrices are distributed uniformly at
random and i.i.d. over different time-slots. Under this proba-
bilistic model, we characterize the asymptotic capacity behavior
of the introduced channel and show that using subspace coding
we can achieve the optimal performance. We extend our model
for the case of multiple sources and characterize the asymp-
totic behavior of the optimal rate region for the case of two
sources. We believe that this result can be extended to the case
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of more than two sources using the same method that is applied
in Section V. For the multi-source as well case we prove that en-
coding information using subspaces is sufficient to achieve the
optimal rate region.

The idea of noncoherent modeling for randomized network
coding was first proposed in the seminal work by Koetter and
Kschischang in [6]. In that work, the authors focused on alge-
braic subspace code constructions over a Grassmannian. Inde-
pendently and in parallel to our work in [9], Montanari et al.
[14] introduced a different probabilistic model to capture the
end-to-end functionality of noncoherent network coding oper-
ation, with a focus on the case of error correction capabilities.
Their model does not examine multiple (non-coherent) blocks,
but instead, allows the packets block length (in this paper termi-
nology; packet length ) to increases to infinity, with the result
that the overhead of coding vectors becomes negligible, very
quickly.

Silva et al. [16] independently and subsequent to our works
in [9] and [10], also considered a probabilistic model for nonco-
herent network coding, which is an extension of the model in-
troduced in [14] to multiple blocks. In their model the transfer
matrix is constrained to be square as well as full rank. This is
in contrast to our model, where the transfer matrix can have ar-
bitrary dimensions, and the elements of the transfer matrix are
chosen uniformly at random, with the result that the transfer ma-
trix itself may not have full rank (this becomes more pronounced
for small matrices). Moreover, we extend our work to multiple
source multicast, which corresponds to a virtual noncoherent
multiple access channel. Our results coincide for the case of a
single source, when the packet length and the finite field of oper-
ations are allowed to grow sufficiently large. Another difference
is that the work in [16] focuses on additive error with constant
dimensions; in contrast, for the case with errors, we focus on
packet erasures.

An interpretation of our results is that it is the finite field
analog of the Grassmannian packing result for noncoherent
MIMO channels as studied in the well known work in [19].
In particular, we show that for the noncoherent model over
finite fields, the capacity critically depends on the relationship
between the “coherence time” (or packet length in our model)
and the min-cut of the network. In fact, the number of active
subspace dimensions depend on this relationship; departing
from the noncoherent MIMO analogy of [19].

The paper is organized as follows. We define our notation
and channel model in Section II; we state and discuss our main
results in Section III; we prove the capacity results for the single
and multiple sources in Sections IV and V, respectively; and
conclude the paper in Section VI.

All the missing proofs for lemmas, theorems, and etc., are
given in Appendix A unless otherwise stated.

II. CHANNEL MODEL AND NOTATION

A. Notation

We here introduce the notation and definitions we use in
Sections III–VI. Let be a power of a prime. In this paper,
all vectors and matrices have elements in a finite field . We
use to denote the set of all matrices over , and

to denote the set of all row vectors of length . The set
forms a -dimensional vector space over the field .

Throughout the paper, we use capital letters, e.g., , to de-
note random objects, including random variables, random ma-
trices, or random subspaces, and corresponding lower-case let-
ters, e.g., to denote their realizations. For example, we denote
by a “random subspace” which takes as values the subspaces
in a vector space according to some distribution, and by a spe-
cific realization. Also, bold capital letters, e.g., , are reserved
for deterministic matrices and bold lower-case letters, e.g., ,
are used for deterministic vectors.

For subspaces and , denotes that is a sub-
space of . Recall that for two subspaces and ,
is the intersection of these subspaces which itself is a subspace.
We use to denote the smallest subspace that contains
both and , namely

It is well known that

For a set of vectors we denote their
linear span by . For a matrix , is the
subspace spanned by the rows of and is the
subspace spanned by the columns of . We then have

.
We use the calligraphic symbols, i.e., or to denote a

set of matrices. To denote a set of subspaces we use the same
calligraphic symbols but with a “ ” i.e., or .

We use the symbols “ ” and “ ” to denote the element-wise
inequality between vectors and matrices of the same size.

For two real valued functions and of , we use
to denote that1

Note that the definition of “ ” is different from the more stan-
dard definition which is . We also use

a similar definition for to denote that

where is a constant.
We use the big- notation which is defined as follows. Let

and be two functions defined on some subset of the
real numbers. We write as , if there
exists a positive real number and a real number such that

for all For the little notation
we use the following definition. We write as

, if for all there exists a real number such
that for all . We use also the big-
notation which is defined as follows. We write
as , if we have as . Finally, we
use the big- notation to denote that a function is bounded both

1One has to specify the growing variable whenever “ ” is used for multi-
variate functions. However, since in this work the growing variable is always ,
the field size, we will not repeat it for sake of brevity.
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above and below by another function asymptotically. Formally,
we write as , if and only if we have

and as .

Definition 1 (Grassmannian and Gaussian Coefficient [22],
[25]): The Grassmannian is the set of all -dimen-
sional subspaces of the -dimensional space over a finite field

, namely

The cardinality of is the Gaussian coefficient, namely

(1)

Definition 2 (The set ): We define to be
the set (sphere) of all subspaces of dimension at most in the

-dimensional space , namely

The cardinality of equals

Definition 3 (The Number ): We denote by
the number of different matrices with

elements from a field , such that their rows span a specific
subspace of dimension .

For simplicity, in the rest of the paper we will drop the sub-
script in the previous definitions whenever it is obvious from
the context.

B. Preliminary Lemmas

We here state some preliminary lemmas related to the defini-
tions introduced in Section II-A.

Existing bounds in the literature allow to approximate the
Gaussian number, for example, we have from [6, Lemma 4] (see
also [23, Section III] that

(2)

Using Definition 1 and (2) we have Lemma 1.

Lemma 1: For large we can approximate the Gaussian
number as follows:

Lemma 2: For given in Definition 3, we have that
[26]

i.e., it does not depend on .
Since does not depend on , and only depends

on through its dimension, as a shorthand notation we will
also use instead of , where .

Using Lemma 2, the following lower and upper bounds are
straightforward:

(3)

which imply Lemma 3 (see also [23]).

Lemma 3: For large values of the following approximation
holds

It is also worthwhile to mention that is the

number of matrices of rank . We can count all the
matrices through the following Lemma 4, (also see [22], [25],
and [26, Corollary 5]).

Lemma 4: For every and we can write

where .

C. The Noncoherent Finite Field Channel Model

We consider a network where nodes perform random linear
network coding over a finite field . We are interested in
the maximum information rate at which a single (or multiple)
source(s) can successfully communicate over such a network
when neither the transmitter nor the receiver(s) have any
channel state information (CSI). For simplicity, we will present
the channel model and our analysis for the case of a single
receiver; the extension to multiple receivers (with the same
channel parameters, and ) straightforward, as we also
discuss in the results section.

We assume that time is slotted and the channel is block
time-varying. For the single source communication, at time slot
(block) , the receiver observes

(4)

where , , and . At each
time-slot, the receiver receives packets of length (captured
by the rows of matrix ) that are random linear combinations
of the packets injected by the source (captured by the rows
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of matrix ). In our model, the packet length can be inter-
preted as the coherence time of the channel, during which the
transfer matrix remains constant. Each element of the transfer
matrix is chosen uniformly at random from , changes in-
dependently from time slot to time slot, and is unknown to both
the source and the receiver. In other words, the channel transfer
matrix is chosen uniformly at random from all possible matrices
in and has i.i.d. distribution over different blocks. In gen-
eral, the topology of the network may impose some constraints
on the transfer matrix (for example, some entries might be
zero, see [3], [8], [20], and [21]). However, we believe that this
is a reasonable general model, especially for large-scale dynam-
ically-changing networks where apart from random coefficients
there exist many other sources of randomness. Formally, we de-
fine the noncoherent matrix channel as follows.

Definition 4 (Noncoherent Matrix Channel ): This is de-
fined to be the matrix channel described by (4)
with the assumption that is i.i.d. and uniformly distributed
over all matrices . It is a discrete memoryless channel with
input alphabet and output alphabet .

The capacity of the channel is given by

(5)

where is the input distribution. To achieve the capacity
a coding scheme may employ the channel given in (4) multiple
times, and a codeword is a sequence of input matrices from .
For a coding strategy that induces an input distribution ,
the achievable rate is

Now we define a noncoherent subspace channel which
takes as an input a subspace and outputs another subspace. Then,
in Theorem 1 we will show that the two channels and
are equivalent from the point of view of calculating the mutual
information between their inputs and their outputs.

Definition 5 (Noncoherent Subspace Channel ): This is
defined to be the channel with input alphabet

and output alphabet and transi-
tion probability

,

otherwise
(6)

where and are the input and output variables of the
channel .

The capacity of the channel is given by

where is the input distribution defined over the set of
subspaces .

We next consider a multiple sources scenario, and the mul-
tiple access channel (MAC) corresponding to (4). In this case,
we have

(7)

where is the number of sources, and each source inserts
packets to the network. Thus, ,

and . We can also collect all in an
matrix and all in an

matrix as follows:

... and

so we can rewrite (7) as

Each source then controls rows of the matrix .
Again we assume that each entry of the matrices is chosen
i.i.d. and uniformly at random from the field for all source
nodes and all time instances.

Definition 6 (The Noncoherent Multiple Access Matrix
Channel ): This is defined to be the channel

described in (7), with the
assumption that , , are i.i.d. and uniformly
distributed over all matrices , . It forms a
discrete memoryless MAC with input alphabets ,

, and output alphabet .
It is well known [15] that the rate region of any multiple ac-

cess channel including is given by the closure of the
convex hull of the rate vectors satisfying

for some product distribution . Note
that where is the transmission rate of the th
source, and is the complement set of .

As before, we define a noncoherent subspace version2 of the
matrix multiple access channel and in Theorem 6 we show that
from the point of view of rate region these two channels are
equivalent.

Definition 7 (Noncoherent Subspace Multiple Ac-
cess Channel ): This is defined to be the
channel with input alphabets

, , 2, output alphabet and
transition probability

otherwise,
(8)

where and are the input and is the output variables
of the channel .

III. MAIN RESULTS

A. Single Source

Our main results, Theorem 2 and Theorem 3, characterize the
capacity for noncoherent network coding for the model given
in (4). We show that the capacity is achieved through subspace

2For simplicity, we restrict this definition to only two source nodes. However,
generalization to sources is straightforward.
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coding, where the information is communicated from the source
to the receivers through the choice of subspaces. Formally, we
have the following results.

Theorem 1: The matrix channel defined in
Definition 4 and the subspace channel defined
in Definition 5 are equivalent in terms of evaluating the mutual
information between the input and output. More precisely, for
every input distribution for the channel there is an input dis-
tribution for the channel such that
and vice versa. As a result, these channels have the same ca-
pacity .

For the proof of Theorem 1 refer to Appendix A and for more
discussion refer to Section IV-A.

Theorem 2: For the channel defined in Defi-
nition 4, the capacity is given by

(9)

where , and tends to zero as
grows.

Theorem 2 is proved in Section IV-B. The result of Theorem 2
is for the large alphabet regime.3. The following result, Theorem
3, is valid for a finite field size, and therefore is a nonasymptotic
result.

Theorem 3: Consider the channel defined in
Definition 4. There exists a finite number such that for
the optimal input distribution is nonzero only for matrices of
rank in the set

(10)

Moreover, for all values of the optimal input distribution is
uniform over all matrices of the same rank, and the total prob-
ability allocated to transmitting matrices of rank equals

The proof of Theorem 3 is presented in Sections IV-C and
IV-D, and uses standard techniques from convex optimization,
as well as large field size approximations. Note that, for re-
ceivers with the same channel parameters (i.e., values of ,
and ) the same coding scheme at the source simultaneously
achieves the capacity for all of them. That is, each receiver is
able to successfully decode.

The result of Theorem 3 for the active set of input dimen-
sions is not asymptotic in . However, it is not easy to find an-
alytically the minimum value of such that the theorem state-
ment holds for all . Theorem 4 demonstrates how we
can analytically characterize given in Theorem 3 for the case

. The proof of Theorem 4 is presented in
Section IV-E.

3We gratefully acknowledge the contribution of an anonymous reviewer who
gave an alternate proof, which focused on the asymptotic regime. We have
included that proof in Section IV-B Our original proof was based partially on the
proof now given for Theorem 3, which is valid for a non-asymptotic regime.

Fig. 1. Numerical calculation of the capacity for small values of and ,
. The dotted line depicts .

Theorem 4: If then the capacity of
for is given by

(12)

where is the indicator function, and is the minimum field
size that satisfies the set of inequalities

and

where and

The capacity is achieved by sending matrices such that their
rows span different -dimensional subspaces.

Moreover, asymptotically in , we can show that
is sufficient for the case and is sufficient

if .
Theorems 2 and 3 state that the capacity behaves as

, for sufficiently large . However, numerical simu-
lations indicate a very fast convergence to this value as in-
creases. Fig. 1 depicts the capacity for small values of , cal-
culated using the Differential Evolution toolbox for MATLAB
[11]. This shows that the result is relevant at much lower field
size than dictated by the formalism of the statement of Theo-
rems 2 and 3.

From Theorem 3, we can derive the following guidelines for
noncoherent network code design.

1) Choice of Subspaces: The optimal input distribution uses
subspaces of a single dimension equal to for

. As reduces, the set of used subspaces grad-
ually increases, by activating one by one smaller and smaller
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Fig. 2. Probability mass function of the active subspace dimensions for channel parameters , . As it is shown in Theorem 3 there exist three different
regimes.

TABLE I
INFORMATION LOSS FROM USING CODING VECTORS WHEN

dimensional subspaces, until, for , all subspaces are used
with equal probability. Fig. 2 pictorially depicts this gradual in-
clusion of subspaces.

This behavior is different from the result of [16] where the
subspaces up to dimension equal to the min-cut appeared in the
optimal input distribution. This difference is due to the different
channel model used in our work and in [16].

2) Values of and : For a given and fixed packet length
, the optimal value of and equals

(optimality is in the sense of minimum requirement to obtain the
maximum capacity for this ). For fixed and , the optimal
value of equals . For fixed and , the
optimal value of equals .

3) Subspace Coding versus Coding Vectors: One of the aims
of this paper was to find the regimes in which the using of coding
vectors [12] is far from optimal. Table I summarizes this differ-
ence. As we see from the Table I subspace coding does not offer
benefits as compared to the coding vectors approach for large
field size4.

Table I is calculated as follows. The achievable rate using
coding vectors equals

where is the number of packets in each genera-
tion, i.e., each packet includes a coding vector of length and

information symbols. Equivalently, we assume that we
use of the possible input packets. The matrix is the

submatrix of that is applied over the input packets. To
calculate , we know that

. Assume we choose
we have , where

. For the capacity we use the large
-regime as considered in Theorem 2 for the case and

the finite -regime of Theorem 4 for the case .

4In the algebraic framework of [6], the lifting construction used coding vec-
tors, and they showed that this construction achieves almost the same rates as
optimal algebraic subspace codes. However, we demonstrate in this paper that
this phenomenon occurs for longer packet lengths using an information-theo-
retic framework.

B. Extension to the Packet Erasure Networks

After the error free single source scenario, we consider packet
erasure networks, and calculate an upper and lower bound on the
capacity for this case. The work in [16], which is the closest to
ours, did not consider erasures but instead constant-dimension
additive errors. In practice, depending on the application, either
of the models might be more suitable: for example, if network
coding is deployed at an application layer, then, unless there
exist malicious attackers, packet erasures are typically used to
abstract both the underlying physical channel errors, as well as
packet dropped at queues or lost due to expired timers.

We model the erasures in the network as an end-to-end phe-
nomenon which randomly erases packets according to some
probability distribution. Formally, we rewrite the channel de-
fined in (4) as5

(13)

where is a diagonal random matrix whose elements
on its diagonal are either 1 or 0. We also assume that is large,
and as a result the transfer matrix is full rank with high proba-
bility. Moreover, we consider the case where , i.e., the
matrix is a fat matrix. Recall that we can think of the rows of
this matrix as packets send by the source, and the rows of the
matrix as packets received at the destination.

Note that in (13) all of the erasure events are captured by the
erasure matrix . Moreover, the erasure pattern is important
only up to determining the number of packets that the destina-
tion receives, since the transfer matrix is unknown and dis-
tributed uniformly at random over all full rank matrices. Thus,
we let the number of received packets (number of nonzero el-
ements on the diagonal of ), with , be a random
variable with some distribution that depends on the packet era-
sures in the network. In this case the capacity is

We can then use our previous result, Theorem 2, to find an upper
and lower bound for the capacity when we have packet era-
sure in the network, as the following Theorem 5 describes.

Theorem 5: Let the number of received packets at the desti-
nation be a random variable defined over the set of integers

5We assume to sake of simplicity.
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Fig. 3. The MAC region for parameters , , , .

. Also, assume that . Then for large , we
have the following upper and lower bound for the capacity ,

where and .
For the proof of Theorem 5 and more discussion refer to

Appendix B.

Note that because we do not necessarily employ full-rank ma-
trices , it is possible that although some packets are erased at
the destination, the received packets still span a matrix of the
same rank as ; thus erasing packets is not equivalent to erasing
dimensions.

C. Multiple Sources

In several practical applications, such as sensor networks,
data sources are not necessarily co-located. We thus extend our
work to the case where multiple not co-located sources transmit
information to a common receiver. In particular, we consider the
noncoherent MAC introduced in Definition 6, and characterize
the capacity region of this network for the case of two sources
and packet length . We believe that this technique
can be extended to more than two sources.

To find the rate region of the matrix multiple access channel
, we first show that the two channels

and are equivalent, as stated in Theorem 6. We then
find the rate region of the subspace multiple access channel

which is stated in Theorem 7. To avoid repetition,
we state Theorem 6 without a proof because its proof is very
similar to that of Theorem 1.

Theorem 6: The matrix MAC defined in Defini-
tion 6 is equivalent to the subspace MAC defined in

Definition 7 in the sense that the optimal rate regions for these
two channels are the same.

Theorem 7: For , the asymptotic (in the
field size ) capacity region of the MAC introduced
in Definition 6 is given by

where

(14)

and

We note that the rate region forms a polytopes that has the fol-
lowing number of corner points (see Corollary 1 in Section V)

The rate region is shown in Fig. 3 for a particular choice of
parameters.

The proof of this theorem is provided in Section V. We first
derive an outer bound by deriving two other bounds: a cooper-
ative bound and a coloring bound. For the coloring bound, we
utilize a combinatorial approach to bound the number of distin-
guishable symbol pairs that can be transmitted from the sources
to the destination. We then show that a simple scheme that uses
coding vectors achieves the outer bound. We thus conclude that,
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for the case of two sources when , use of coding
vectors is (asymptotically) optimal.

IV. THE CHANNEL CAPACITY: SINGLE SOURCE SCENARIO

In this section we will prove Theorem 2, Theorem 3, and
Theorem 4.

A. Equivalence of the Matrix Channel and the Subspace
Channel

For convenience let us rewrite the channel (4) again6

To find the capacity of the above channel we need to maximize
the mutual information between the input and the output of the
channel with respect to the input distribution . Since the
rows of are chosen independently of each other, assuming that
a matrix has been transmitted, we can think of the rows
of the received matrix as chosen independently from each
other, among all the possible vectors in the row span of . The
independence of rows of allows us to write the conditional
probability of given , referred to as the channel transition
probability, as follows:

otherwise
(15)

where , and .
The mutual information between and is a func-

tion of and that can be expressed as

(16)
It is clear from (15) that for all ,

such that which reveals symmetry for the
channel . We exploit this symmetry to show that
as it is stated in Theorem 1 and proved in Appendix A.

The proof of Theorem 1 determines how we can map
an input distribution of to an input distribution for

that achieves the same mutual information. The input
distribution should be chosen such that we have

. One simple way to do this
is to put all the probability mass of on one matrix such
that .

B. Upper and Lower Bound for the Capacity of

Here, we state the proof of Theorem 2 by giving upper and
lower bounds for the capacity that differ in bits as .

Let denote the capacity of the channel .
Let denote the capacity of the channel

where is a full-rank matrix chosen uniformly
at random among all the full-rank matrices in . Then, we
have the following lemma.

6In the rest of the paper we will omit for convenience the time index .

Lemma 5: We can bound from above and below
as follows:

where and
.

Proof: Let denote a generic random
matrix chosen uniformly at random and independently from
any other variables. Similarly, let denote a
generic full-rank matrix chosen uniformly at random among
all such full-rank matrices and independent from any other
variable. (Note that each new instance of such a matrix in the
same equation denotes a different random variable which is
independent from the other random variables.)

Since the channel is statistically equivalent to
the channel , we have by the data
processing inequality that .

Using the same argument, since the channel is
equivalent to the channel if , and
is equivalent to the channel if we
have .

To obtain the lower bound we proceed as follows. Let us

choose and , where .

Then we can write

where is the upper left sub-matirx of . Thus,
again the data processing inequality implies that

.

Lemma 6: For we have

where .
Proof: By Lemma 5 we have

where follows from [16, Corollary 2] and follows from
Lemma 1.

Lemma 7: For we have

where .
Proof: For every subspace , let

be a matrix in reduced row ech-
elon form such that . Choose
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, where is chosen

uniformly at random from . Define the random
variable . Note that when

. Thus, we have and

.

Then, it follows that

where is due to Lemma 5, follows from Theorem 1, and
holds since is a deterministic function of . Now, note

that we can write

and thus we obtain the desired result.

Combining Lemma 6 and Lemma 7 recovers Theorem 2.

C. The Optimal Solution: General Approach

Generally, we are interested in finding the capacity and input
distribution of exactly. It is shown in Theorem 1 that in-
stead of the channel we can focus on the channel .
Thus, we are interested in optimizing the following quantity:

(17)

Remember that and .
The following lemma states that the optimal solution for the

channel should be uniform over all subspaces with the same
dimension, as it is intuitively expected from the symmetry of the
channel.

Lemma 8: The input distribution that maximizes
for is the one which is uniform over all subspaces having
the same dimension.

Lemma 8 shows that the optimal input distribution can be
expressed as

(18)

where , , and we have
. We can then simplify as stated

in the following lemma.

Lemma 9: Assuming an optimal input probability distribu-
tion of the form in (18), the mutual information can
be simplified to

(19)

where

(20)

Lemmas 8 and 9 show that the problem of finding the optimal
input distribution for the channel is reduced to finding the
optimal choice for , . We know that
the mutual information is a concave function with respect to

’s. Observation 1 implies that because (18) is a linear
transformation from ’s to ’s, as a result the mutual
information is also concave with respect to ’s
[18].

Observation 1: Let be a concave function and let
be a linear transform from to . Then is also a

concave function.
Using Observation 1, we know that the mutual information is

a concave function with respect to ’s. This allows us to use
the Kuhn-Tucker theorem [18] to solve the convex optimization
problem. According to this theorem, the set of probabilities ,

, maximize the mutual information if and
only if there exists some constant such that

(21)

where , , and is the
vector of the optimum input probabilities of choosing subspaces
of certain dimension
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Lemma 10: By taking the partial derivative of the mutual in-
formation given in (19) with respect to , we have

(22)

Multiplying both sides of (22) by and summing over we
get

By choosing the optimal values for
, the right-hand side (RHS) becomes , and

the mutual information increases to . So we may write
.

D. Solution for Large Field Size

In this subsection, we focus on large size fields, . This
assumption allows us to use some approximations to simplify
the conditions in (21). Assuming large we can rewrite (22) as
follows:

(23)

where we have used Lemma 1 and Lemma 3. Using similar ap-
proximations, defined in (20) can be approximated
as

(24)

Then we have the following result, Lemma 11.

Lemma 11: The dominating term in the summation in (23) is
the one obtained for .

From the proof of Lemma 11 written in Appendix A, we can
also see that the remaining terms in the summation of (23) are
of order , so we can write

(25)

Assuming that the expression inside the function in
(25) is not zero for every , we can rewrite
the Kuhn-Tucker conditions as

where the inequality holds with equality for all with .
Let and define the matrix
with elements

,
otherwise.

We also define the column vector with elements
for . Note that for convenience the

indices of matrix and vector start from 0. Using these def-
initions, we are able to rewrite the Kuhn-Tucker conditions in
the matrix form as

(26)

In the following, we consider two cases for and ,
and find for each of them, separately.

First Case: . In this case we can explicitly write the
matrix and vector as

...
...

. . .
...

...

and

The fact that the expression inside the function in (25)
is nonzero for , forces to be positive. Thus the last row
of the matrix inequality in (26) should be satisfied as an equality.
Therefore

Now we use induction to show that the optimal solution has
the form

: ,
:

(27)

where we will determine later.
Let us fix and assume that for

. Then for we can write
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or equivalently

(28)

We can use induction for one step more to show that is of
the desired form (27) if the previous expression is satisfied with
equality. This is true if we have

, or equivalently (assuming large ) if we have
. So we can conclude that we should have

. It can be easily verified that for
the Kuhn-Tucker equation for satisfies the strict inequality
so for . The above argument re-
sults in a solution of the following form for the case

,
.
(29)

Second Case: . We now write matrix and vector
as shown in the equation at the bottom of the page. The last

rows of are the same while is decreasing with for
. Thus, the last inequalities are strict and therefore

(30)

The remaining equations can simply be reduced to the first
case. Define

...
...

. . .
...

...

The remaining conditions in this case can be written as

which is exactly similar to (26), for . Therefore, the op-
timal solution for the first case will also satisfy these conditions,
i.e.

, (31)

with . Summarizing (30) and (31), we
can obtain the optimal solution for this regime, as

,
(32)

where . This completes the proof of The-
orem 3. By normalizing to 1 we can also obtain an alternative
proof to Theorem 2.

Discussion: To characterize the exact value of one have to
consider the exact form of the set of equations given in (28) (for
each ) which are as follows:

Although it is hard to find exactly, it is possible to show that
there exists finite such that result of Theorem 3 holds for. This
can be done by solving above equations assuming that is
zero for every (assuming ). Then, it can be observed that
the RHS of (28) are either greater or less than zero. Now by as-
suming finite but large enough and considering the exact form
of (28) we have some small perturbations that cannot change the
sign of RHS of (28) so we are done.

E. Proof of Theorem 4

Let denotes the error term in (25). We can easily write
the exact expression for which is as follows: (see the equa-
tion at the bottom of the next page), where .

...
. . .

. . .
...

...
...

...

...
. . .

...
...

...
. . .

...

and
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We consider the case where so Theorem
3 implies that for the optimal input distribution we have
where and . Then we can simplify
more and write

(33)

where we also use Lemma 4 in the above simplification.
To find , the minimum value of that the result of Theorem

4 is valid for, we should consider the exact form of (28) and
check that the RHS of (28) is less than or equal to zero for

. So from (28) for every we may
write

or equivalently

(34)
Using a similar argument we should have also

(35)

From (32) for the capacity we have
. Evaluating (33) at we have

which results in the capacity stated in the assertion of
Theorem 4.

Discussion: We derive a sufficient condition on the minimum
size of to satisfy the set of conditions stated in (34) and (35).
Using this sufficient condition we explore the behavior of as

increases.

For we can write

(36)

where follows from (2) and (3), and in we use the fact
that .

Then for we can write

(37)

where follows from (2) and (3).
Let us consider two cases. First, we assume that

so . To find a sufficient condition for we
have to only consider conditions given in (34). Using
(36) and (37) and assuming that we should
have , or equivalently

.
For the second case we have which means .

Here, using a similar argument to the one given above for the
first case we can show that conditions (34) give some constant

as . However, the conditions (35) give a sufficient
condition for which grows as . Now, using (35)–(37)
and assuming that , a sufficient condition for would
be . For large for
the sufficient condition we have .

V. MULTIPLE SOURCES SCENARIO: THE RATE REGION

The goal of this section is to characterize , the set of all
achievable rate pairs for two user communication over
the multiple access channel described in Definition 6.
More precisely, we will show that . In order to do this,
we first formulate a mathematical model for this channel. Then,
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we present an achievability scheme, to show that is achiev-
able, i.e., . In Section V-A we prove the optimality of
this scheme and show that .

The proof of the converse part of the theorem is based on
two outer bounds, namely, a cooperative bound and a coloring
bound. For the coloring bound, we utilize a combinatorial argu-
ment to bound the number of distinguishable symbol pairs that
can be transmitted from the two sources to the destination. This
bound allows us to restrict the effective input alphabets of the
sources to subsets of the original alphabets, with significantly
smaller size. We can then easily bound the capacity region of
the network using the restricted input alphabet.

The transition probability of the channel given by Definition
6, , can be written as [9]

,
otherwise.

(38)

Our first result, stated in Theorem 6, is that the multiple ac-
cess matrix channel described in Definition 6 is equivalent to
the “subspace” channel described in Definition 7, that
has subspaces as inputs and outputs. So to characterize the op-
timal rate region of , we can focus on finding the op-
timal rate region of . We will use this equivalence in
the rest of this section.

We know from [15] that the rate region of the multiple access
channel is given by the closure of the convex hull of
the rate vectors satisfying

for some product distribution . Note
that , where is the transmission rate of the
th source, and is the complement

set of .

A. Achievability Scheme

In this subsection we illustrate a simple achievability scheme
for the corner points of the rate region defined in Theorem 7.
The remaining points in the rate region can be achieved using
time-sharing.

For given , define the following subspace code-
books: (see the equation at the bottom of the page). If we
transmit messages from these code-books, we have

where captures the first columns of . Therefore, de-
coding at the receiver would be just recovering of and
given , , and . Since , the
matrix is full-rank with high probability, and therefore
the decoder is able to decode and .

Note that the achievability scheme uses effectively the coding
vectors approach [12]. This indicates that for

and large enough, the subspace coding and the coding
vectors approach achieve the same rate.

B. Outer Bound on the Admissible Rate Region

In the following we will present an outer bound for , the ad-
missible rate region of the noncoherent two-user multiple access
channel . Recall that by Theorem 6 we can focus on
the subspace channel . We first show in Proposition 1
that , a cooperative outer-bound. Then Proposition 2
demonstrates that , a coloring outer-bound. Finally we
show that , yielding the desired outer-bound

which matches the achievability of Section V-A.
The first outer bound, called cooperating outer bound, is

simply obtained by letting the two transmitters cooperate to
transmit their messages to the receiver, i.e., we assume they
form a super-source. Applying Theorem 2 for the noncoherent
scenario for the single super-source, the one who controls the
packets of both transmitters, we have the following proposition.

Proposition 1: Let . We have
where

and .
The rest of this section is dedicated to deriving the second

outer bound which is denoted by . This bound is based on an
argument on the number of messages per channel use that each
user can reliably communicate over the multiple access channel.

Let be an achievable rate pair for which there
exists an encoding and decoding scheme with block length
and small error probability. One can follow the usual converse
proof of the multiple access channel from [15] to show that
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For each time instance , denote by , the projection of
the code-book used by user to its th element. For a single
source scenario, we have shown in Section IV that we can use
the set as our input alphabet for all time slots, and
have the receiver successfully decode the sent messages, and
hence, the user can communicate distinct messages.
For the multisource case, is more restricted. The main
reason for this is that the transition probability of the multiple
access channel is of the form .
That is, if and satisfy

, then , and
hence the receiver cannot distinguish between the two pairs.

In the following we will discuss this indistinguishability in
detail, and derive the maximum number of distinguishable pairs
which can be conveyed through the channel. In order to do so,
we start with some useful definitions and lemmas.

Definition 8: For a fixed , we denote by
the set of subspaces of dimension that inter-

sect with at dimensions, i.e.

(39)

It turns out that the cardinality of the set depends
on only through its dimension, . Therefore, we
denote this number by , which is characterized in
the following lemma.

Lemma 12: The cardinality of the set is given
by

(40)

Definition 9: For a fixed and
, we define

(41)

Lemma 13: The cardinality of the set only depends
on the dimensions of the two subspaces and their intersection,

, , and .
Moreover, it can be asymptotically characterized by

(42)

Definition 10: For an arbitrary set , we denote
the projection of onto the set of -dimensional Grassmannian

. Formally

For a fixed time instance , and corresponding subsets and
, we can construct a table with rows and columns,

each row (column) corresponding to one subspace in
. In the following, we define an equivalence relation

for the cells of this table.

Definition 11: A coloring for a table constructed as above is
an assignment of colors to the cells of the table using a function

such that if
and only if .

It is clear that the coloring definition above exactly matches
with that of indistinguishability we discussed before. More pre-
cisely, two pairs of subspaces and are distin-
guishable if and only if their corresponding cells in the table
have different colors. The following theorem upper bounds the
cardinality of the subspace sets based on this fact.

Theorem 8: For each pair of uniquely distinguishable sets
defined on the input alphabet for the mul-

tiple access channel , there exist integer numbers
such that

(43)

Proof: We may drop the time index in this proof for brevity.
For a fixed , let be the dominating dimension in the set ,
i.e.

where is as defined in Definition 10. It is clear that

(44)

where the last asymptotic equality follows from the fact that
is a constant with respect to the underlying field size . This
means that we may lose only a constant factor in the code-book
size by removing all subspaces from , except the ones
that have dimension . Therefore the loss in the rate values
would be negligible as grows. Consider the table constructed
for and . Let be a -dimensional
subspace, and consider the corresponding row of the table. We
further partition the columns of the table with respect to into

, where

(45)

We use and to denote the number of
different colors in the row that corresponds to and its inter-
section with , respectively.

Note that , and therefore
the number of different colors that appear in this partition of
the row, cannot exceed the number of colors that could poten-
tially appear if . Recall that
has elements, which are split into subsets of size

of the same color. Therefore, for a large field size,
the number of different colors in this partition of the row corre-
sponding to , can be upper bounded as

(46)
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Hence

(47)

where the asymptotic inequality and equality hold for large .
Moreover, the last equality is based on the assumption

and the fact that the exponent is
a decreasing function of for .

It is worth mentioning that this argument holds for each
choice of . This means if the first user transmits a

-dimensional subspace, the receiver cannot distinguish more
that different symbols. The same argument holds
for a fixed column which yields an upper bound to the
number of distinguishable messages as .

Theorem 8 essentially upper bounds the single letter mutual
information for any time instance . The
following proposition summarizes this discussion.

Proposition 2: We have where

in which is as defined in (14), and

Proof: Using Theorem 8, we can upper bound the number
of distinguishable pairs for each time instance. For a fixed , let

and denote the dominating dimensions. Therefore,
we have

where for , and , 2. Simi-
larly, we have

Therefore

(48)

It is clear that the RHS of (48) is a convex linear combination
of the points

which are in the region . This completes the
proof.

Summarizing Proposition 1 and Proposition 2, we have
. So, it only remains to prove the following theorem

in order to show that is an outer bound for the admissible rate
region.

Theorem 9: We have .
Before presenting the proof of the theorem, we give the fol-

lowing two lemmas, which help us to characterize the corner
points of the region of our interest.

Lemma 14: The set of corner points of is the set of all
rate pairs of the form

for some , where (see the equation at the bottom of
the page).

Lemma 15: If , then any intersecting point of
with the boundary of is a point

of the form , where

That is, the boundaries of and can only intersect on
either the corner points of or the – axes.

Proof of Theorem 9: Note that is a convex
polytope, formed as intersection of a polytope and the convex
hull of a finite number of polytopes. Therefore, it suffices to
prove the theorem only for its corner points. Let

be a corner point. It is clear that one of the fol-
lowings occurs.

(i) is a corner point of and interior point of
;

(ii) is an intersecting point of the boundaries of
and .

In the former case, Lemma 14 which characterizes the
set of corner points of , implies there exists a pair
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such that .
Also implies

Note that the function is an in-
creasing function of for . Therefore,

, and hence ,
which implies that .

In the latter case, it follows from Lemma 15 that
should be either a corner point of for which the above argu-
ment holds, or of the form
with . Again , which implies that

, and . This
completes the proof.

Corollary 1: The number of corner points of the rate region
excluding the point (0,0) is equal to

Proof: By Lemma 14 the set of corner points of region
correspond to the pairs which belong to the set

. In this case the number of
corner points excluding is .

However the final rate region is the intersection of and
, where the later one includes all the rate pairs with sum

smaller than , , see Propo-
sition 1.

Lemma 15 explains how these two regions inter-
sect with each other. In this case, the corner points
correspond to the pairs which belong to the
set where

and . So
the number of corner points excluding (0,0) is

where takes into account the case where two points
and overlap with each other.

VI. CONCLUSION

In this paper, we used a random matrix channel to model the
problem of multicasting over a packet network that employs
randomized network coding. We calculated the capacity of this
channel for the case where the finite field of operation is
large, but showed through numerical results fast convergence
for small values of . We prove that use of subspace coding,
proposed for algebraic coding in [6] and [7], is optimal for this
channel. Moreover, we showed that the capacity achieving dis-
tribution for very small packet lengths uses subspaces of all
dimensions, while as the packet length increases, the number
of required dimensions in the optimal distribution decreases. In
particular, the choice of the subspace dimension used in the sem-
inal work of Koetter and Kschischang [6] is indeed optimal for
large enough packet size. We extended our work to the case of

multiple access with two sources, where we used a coloring ar-
gument to derive an outer bound for the capacity that we believe
is interesting in itself. We showed that in all the cases we ex-
amined, the throughput benefits subspace coding offers as com-
pared to the use of coding vectors go to zero as the alphabet size

increases, and thus use of coding vectors is (asymptotically)
optimal.

APPENDIX A
PROOFS

1) Proof of Theorem 1: To prove the theorem, we start with
for the channel , stated in (16), where the channel

transition probability is given in (15). We will show that for
each input distribution there exists an input distribution

for the channel such that
and vice versa.

We know that if . So
we can write

where we choose and define

,
otherwise.

Then expanding we have

Now using the symmetry properties of we can
simplify . In fact and

if . So we can remove the sum-
mation over and write

for some matrix such that . Remember that
is defined in Definition 3, Section II. Defining

,
we can write
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Based on the above discussion going back from the channel
to is very easy. It is sufficient to choose

for all . This completes the proof.

Proof of Lemma 2: We want to count the number of dif-
ferent matrices such that where is an
specific dimensional subspace of .

We know that we can decompose as

where and are full rank matrices. Let us fix such that
. Now for every two different full rank matrices

and we would obtain different matrices and
such that and . So the number

of different where is equal to the number of full
rank matrices over which is equal to ,
and we are done.

Proof of Lemma 8: Let be the optimal input dis-
tribution of the channel with transition probabilities given
in (6). For a fixed dimension , and an arbi-
trary permutation

which acts on subspaces of dimension , define as

if ,
if .

Also define where the summa-

tion is over all possible permutations. Rewriting the mutual in-
formation in (17) as a function of the input distribution and the
transition probabilities, , , we have

where is due to concavity of the mutual information
with respect to the input distribution, and holds because

for all , since the permutation only permutes the terms in a
summation in (17).

Note that assigns equal probabilities to all subspaces
with dimension , and the above-mentioned inequality shows

that it is as good as the optimal input distribution. A similar ar-
gument holds for all . Therefore, a dimen-
sional-uniform distribution achieves the capacity of the channel.

Proof of Lemma 9: Assuming an optimal input probability
distribution of the form (18), the probability of receiving a spe-
cific subspace at the receiver can be written as

Splitting the summation into two, we can write

(49)
where . Using the following result, Lemma 16,
we can replace the second summation in (49).

Lemma 16: Let be a fixed subspace of with di-
mension . Then the number of different subspaces
with dimension , , that contain is equal to

.

Proof: This lemma can be proved by applying [24, Lemma
2] with proper choice of the parameters.

Using Lemma 16 we can rewrite (49) as

(50)

where follows from the following result, Lemma 17.

Lemma 17: The following relation for the Gaussian
number holds [26], [25]:

Now we can simplify the mutual information in
(17) as follows. Using (6), (18), and (50) for we can
write the equation shown at the bottom of the next page where

(51)
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because only depends on . Now observe that the two
inner most summations depend on and only through their
dimensions. So we can write

Then using Lemma 4 in Section II-B we can further simplify the
mutual information and write

(52)

that is the assertion of Lemma 9.

Proof of Lemma 10: By taking the partial derivative of the
mutual information with respect to , we have that

where to derive we use Lemma 4 in Section II-B.

Proof of Lemma 11: For convenience we rewrite (24) again

(53)

We prove the assertion in two steps for every . First, let us as-
sume that the ’s are such that we have

. Then using (53) one can conclude that

so we should have for .
We know that , and , so

. So we can deduce that

,

where , , is the largest index such that
. So in this case the dominating term in the summation of

(23) is the one obtained for because the order
difference between each term inside the summation of (23) is at
least of order .
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Now, for the second case, let us assume that the ’s are such
that we have . We will show that
this assumption leads to a contradiction. Using (53) we can write

so we should have for .
As before, we find the asymptotic behavior of for
different values of but in this case we should make finer
regimes for . The asymptotic behavior of ,

, is either or . So we can write

,
,

where , , is the largest index such that
which means that for .

As before , , is the largest index such that
. Now we check the Kuhn-Tucker conditions (21) for

and . From the above argument we have that
and . We know that , so we have

. On the other hand, we have ,
which is a contradiction implying the second case cannot occur.
This completes the proof.

Proof of Lemma 12: There are dif-

ferent choices for the intersection of and . We have to
choose basis vectors for the rest of the subspace. This
can be done in

ways. So we have
. The proof follows

from the results in [24, Lemma 2], by proper choice of
parameters. Independently, an alternate proof of this lemma
appeared in our paper [17].

Proof of Lemma 13: Define , where
. The

proof of this lemma is similar to that of Lemma 12, unless we
can only choose the last basis vectors from instead
of . Therefore replacing in Lemma 12 with , we have

.

Proof of Lemma 14: Let be a corner point of the
region . Since is the convex hull of a set of primitive
regions, there should exist a primitive region which
contains as a corner point, i.e.

We will show that any point is dom-
inated by the segment connecting

and . In order to show
that, we have to prove that there exists some , such that

(54)

After a little simplification, (54) can be rewritten as

The last two inequalities can be satisfied for some choice of if
and only if . Therefore, if we have ,

, and for some ,
then and also belong to , and hence,

is an interior point, and cannot be on
the boundary of the region. Eliminating such from ,
we get .

It is also easy to show that all of the rate pairs corresponding
to are on the boundary of . This can be done
by comparing the slope of the connecting segment for two con-
secutive points (according to the order they are appeared in ).
The slopes are

It is easy to check that all the slopes are negative and they are
in a decreasing order. Therefore, no point in the set can be an
interior point.

Proof of Lemma 15: Note that implies
. Since is a convex region, its boundary

intersects with the line in ex-
actly two points (it cannot be only one point, otherwise it would
be inside of ). It is easy to verify that the rate points
corresponding to and

lie on both the boundary
of and the line . Therefore
this line cannot intersect with the boundary of in any other
point.

APPENDIX B
EXTENSION TO PACKET ERASURE NETWORKS

Let us write the capacity for the erasure case as follows:
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where follows from the independence of input distribution
and the distribution of the number of received packets .
The Upper Bound: We can write an upper bound for as

follows:

where . From here on, let us assume that
. We thus have that and we can write

Let us define and so we can write

The Lower Bound: For the lower bound we can write

From (19) we know that we can write

Now assume that and choose the input distribu-
tion to be for some and for all

. Then for this input distribution we have

Then assuming is large we may approximate the above mutual
information as follows:

The term in the summation is maximized for
and because we had shown before in Lemma

11 that , we can write

So by choosing we can write the lower bound for
as follows:
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