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Abstract—We consider a group of m trusted nodes that aim
to create a shared secret key K over a wireless channel in the
presence an eavesdropper Eve. We assume an erasure broadcast
channel from one of the honest nodes to the rest of them including
Eve. All of the trusted nodes can also discuss over a cost-free
public channel which is observed by Eve. For this setup we
characterize the secret key generation capacity and propose an
achievability scheme that is computationally efficient and employs
techniques from network coding. Surprisingly, whether we have
m = 2 nodes, or an arbitrary number m of nodes, we can
establish a shared secret key among them at the same rate,
independently of m.1

I. INTRODUCTION

We consider the problem of generating a secret key K
among m ≥ 2 honest nodes that communicate over a wireless
channel in the presence of a passive eavesdropper, Eve. We
restrict our attention to the case where communication occurs
either through a broadcast erasure channel, where erasures are
independent among all receivers of the broadcast transmissions
(including Eve), or, through a no-cost public channel.

We characterize the secret key generation capacity and
propose a computationally efficient achievability scheme that
employs techniques from network coding. Surprisingly, we
show that the rates at which we can generate a secret key
among the m nodes, is not affected by the number of nodes
m; that is, whether we try to establish a secret key between
two nodes, or an arbitrary number, we can do this at the same
rate. This result is reminiscent of the main theorem in network
coding, where a source can multicast information to a set of
receivers at the same rate, independently of the number of
receivers [1].

Secret key generation over wireless channels is a problem
that has attracted significant interest. In a seminal paper
on “wiretap” channels, Wyner [2] pioneered the notion that
one can establish information-theoretic secrecy between Alice
and Bob by utilizing the noisy broadcast nature of wireless
transmissions. However, his scheme works only if we have
perfect knowledge of Eve’s channel and moreover, only if
Eve has a worse channel than Bob. In a subsequent seminal
work, Maurer [3] showed the value of feedback from Bob to
Alice, even if Eve hears all the feedback transmissions (i.e.,
the feedback channel is public). He showed that even if the
channel from Alice to Eve is better than that to Bob, feedback
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allows Alice and Bob to create a key which is information-
theoretically secure from Eve. The problem of key agreement
between a set of terminals with access to noisy broadcast chan-
nel and public discussion channel (visible to the eavesdropper)
was studied in [6], where some achievable secrecy rates were
established, assuming Eve does not have access to the noisy
broadcast transmissions. This was generalized in [7], [8] by
developing (non-computable) outer bounds for secrecy rates.
To the best of our knowledge, ours is the first work to consider
multi-terminal secret key agreement over erasure networks,
when Eve also has access to the noisy broadcast transmissions.
Moreover, unlike the information-theoretic works in [2], [3],
[4], [6], [8] that assume infinite complexity operations, our
scheme is computationally efficient.

The paper is organized as follows. In §II we introduce our
notation and the problem formulation. In §III we describe our
achievability scheme and analyze its performance. In §IV we
state an upper bound for the secret key generation capacity
and show that it matches the achievable rates.

II. NOTATION AND SETUP

A. Notation
We use uppercase letters (e.g., X) to represent random

variables (or more generally random objects). Every random
variable in this paper takes values in a finite set. Given
random variables X1, . . . , Xm, we write X1:m to denote
(X1, . . . , Xm). We also use X1:t or more simply Xt to denote
(X[1], . . . , X[t]). Bold capital letters (e.g., A) are reserved for
deterministic matrices. Finally, we use Uni(FL

q ) to denote the
uniform distribution over vectors of length L that are defined
over finite field Fq .

B. Problem Statement
We consider a set of m ≥ 2 honest nodes, T0, . . . , Tm−1 (T

for “terminal”) that aim to share a secret key K among them-
selves while keeping it concealed from a passive adversary,
Eve. Eve does not perform any transmissions, but is trying
to eavesdrop on (overhear) the communications between the
honest nodes. For convenience, sometimes we will refer to
node T0 as “Alice.”

We assume that Alice has access to an erasure broadcast
channel such that the rest of the terminals (including Eve)
receive independent erased version of what she broadcasts.
The input and output symbols to the erasure channel are
packets of length L of elements from a finite filed Fq . When
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Alice transmits a packet, node Ti correctly overhears it with
probability 1 − δi, where δi is the “erasure probability” of
the channel. Similarly, Eve correctly receives the packets with
probability 1− δE . The erasure events happen independently
over time and across different channels. For simplicity in this
paper we will focus on the symmetric case where we have
δi = δ.

We also assume that all of the honest terminals can discuss
over a cost-free public channel where everybody (including
Eve) can hear the discussion.

In the following we define a protocol that abstracts the
interactive communication between terminals that aim to share
a common secret key K (see also [3], [4], [6], [8]).

Definition 1: The secret key generating protocol is defined
as follows:

1) For t = 0, all of the honest terminals generate indepen-
dent random variables W0, . . . ,Wm−1.

2) (i) For time 1 ≤ t ≤ n, Alice transmits X0[t] over the
broadcast channel where

X0[t] = X0,t

(
W0,Dt−1

)
.

We will define the random variables D[t] in the follow-
ing. Then the other terminals receive X1[t], . . . , Xm−1[t]
and Eve receives XE [t].
(ii) Following each of the broadcast transmissions, there
is the possibility for the terminals to discuss over a
cost-free public channel. This discussion continues for
r[t] rounds and is represented by the random variables
D[t] =

(
D0[t], . . . ,Dr[t][t]

)
, where

Di[t] = Di,t

(
Wj , X

t
j ,Dt−1,D0:i−1[t]

)

is the public message revealed by the jth terminal with
j = i mod m (in other words, the indexing of the
discussion is done in a round robin order).

3) Finally, the ith terminal creates a key Ki where

Ki = Ki(Wi, X
n
i ,Dn).

Definition 2: A number Rs is called an achievable key
generation rate if for every ε > 0 and sufficiently large n there
exists a key generating protocol as defined in Definition 1 such
that we have

P [Ki $= Kj ] < ε, ∀i, j : i $= j, (1)
I(K0;X

n
E ,Dn) < ε, (2)

and
1

n
H(K0) > Rs − ε. (3)

The supremum of the achievable key rate as n → ∞ and
ε → 0 is called the key generation capacity Cs.

III. LOWER BOUND FOR THE KEY GENERATION
CAPACITY

Here we describe and analyze our achievability scheme.
Private Phase:

1) Alice broadcasts n packets, x1, . . . , xn, where xi ∈ FL
q

and xi ∼ Uni(FL
q ) (we will call them “x-packets”). Of

these, n∗ packets are received by at least one honest
node. This set is denoted by N∗ where n∗ = |N∗|.

Public Discussion (Initial Phase):
1) Each honest node sends Alice publicly a feedback

message specifying which x-packets it received. Let ITi

denotes the set of packets’ indices received by the ith
terminal Ti.

2) Alice constructs h = δE · n∗ linear combinations of the
x-packets, y1, . . . , yh (we will call them “y-packets”),
as follows:
(i) She divides the set N∗ of x-packets that were re-
ceived by at least one honest node into non-overlapping
subsets, such that each subset consists of all the packets
that were commonly received by a different subset of
honest nodes. To be more precise, let S be an arbitrary
non-empty subset of {1, . . . ,m − 1} and let us define
the set

NS,S ! {xi|i ∈ ITj : ∀j ∈ S, and i /∈ ITj : ∀j /∈ S}.

Then we have

N∗ =
⋃

∅$=S⊆{1,...,m−1}

NS,S .

(ii) From each such subset of packets NS,S , she creates
δE · nS,S linear combinations using the construction
provided in Lemma 2 (provided in the Appendix), where
nS,S ! |NS,S |.
Then she publicly reveals the coefficients she used to
create all the y-packets.

3) Each node Ti reconstructs as many (say hi) of the y-
packets as it can (based on the x-packets it received in
step #1). For hi we can write

hi =
∑

∅$=S⊆{1,...,m−1}:
i∈S

δE · nS,S .

Public Discussion (Reconciliation Phase):
1) Alice creates h − mini hi linear combinations of the

y-packets (we will call them “z-packets”), using the
construction provided in Lemma 3 (provided in the
Appendix). She publicly reveals both the contents and
the coefficients of the z-packets, such that each node Ti

receives at least h− hi of them.
2) Each node Ti combines the h− hi z-packets it received

with the hi y-packets it recreated in phase 1, and
reconstructs all the y-packets.

3) Alice creates l = mini hi linear combinations of the
y-packets, k1, . . . , kl (we will call them “k-packets”),
using the construction provided in Lemma 4 (provided
in the Appendix). She publicly reveals the coefficients
she used to create all the k-packets.

4) Each node Ti reconstructs all the k-packets. The com-
mon secret key is the concatenation of all the k-packets,
K = 〈k1, . . . , kl〉.
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Now we may summarize the above achievability scheme as
follows based on Definition 1. At t = 0 Alice generates the
random variable W0 = Xn

0 where X0[i] ∼ Uni(FL
q ). We have

also W1:m−1 = ∅. For each time t, 1 ≤ t < n, she broadcasts
X0[t] and there is no public discussions afterwards; namely
we have D[t] = ∅. After the nth transmission by Alice there
is a public discussion in many rounds; simplified as follows.
We have D[n] = (P1, P2, P3, P4) where P1 denotes the set of
indices ITi that have been sent back by the honest terminals,
P2 denotes the coefficients of the y-packets, P3 denotes the
z-packets and their coefficients, and finally P4 represents the
coefficients of k-packets.

Theorem 1: The achievable secret key generation rate of
the above scheme is

Rs = (1− δ)δE (L log2 q) .

Proof: The way that the achievability scheme is proposed,
constructively satisfies Condition (1).

To prove Condition (3) we proceed as follows. Let us define
l ! l/n. Then we can write

H(K) = H(K, l) = H(K|l) +H(l)

≥ H(K|l)
= H(K|α < l < β) · P

[
α < l < β

]

+H(K|l ≥ β) · P
[
l ≥ β

]
+H(K|l ≤ α) · P

[
l ≤ α

]

≥ H(K|α < l < β) · P
[
α < l < β

]

≥ nα (L log2 q)
[
1− P

[
l ≤ α

]
− P

[
l ≥ β

]]
,

where α = µ − δ and β = µ + δ for 0 < δ ≤ µ. Then by
applying the concentration result of Lemma 5 (see Appendix)
we have

P
[
l ≤ α

]
≤ (m− 1) exp

(
− δ2

2µ
n

)
! a,

and
P
[
l ≥ β

]
≤ exp

(
− (m− 1)δ2

3µ
n

)
! b.

So we can write
1

n
H(K) > Rs − ε,

where Rs = µ(L log2 q), µ = (1− δ)δE , and

ε = µ (L log2 q) [a+ b] + δ (L log2 q) [1− a− b] .

Then we have ε → 0 if δ → 0.
To prove Condition (2) we need to show that

I(K;Xn
E , P1, P2, P3, P4) < ε.

By using a similar technique that we used above to bound
H(K), (using Lemma 2 and some concentration results for
nS,S) we can show that

I(Y ;Xn
E , P1, P2) < ε. (4)

Using Lemma 4, by construction we have also

I(K;P3, P4) = 0. (5)

Now we know that the coefficients of the z-packets and k-
packets form a basis (see Lemma 4) so the random variable
Y and the random variable (K,P3, P4) are equivalent (having
one we have the other). Then we can write (4) as follows

I(Y ;Xn
E , P1, P2) = I(K,P3, P4;X

n
E , P1, P2)

= I(P3, P4;X
n
E , P1, P2)

+ I(K;Xn
E , P1, P2|P3, P4) < ε,

so
I(K;Xn

E , P1, P2|P3, P4) < ε. (6)

Now we can expand

I(K;Xn
E , P1, P2, P3, P4) = I(K;P3, P4)

+ I(K;Xn
E , P1, P2|P3, P4),

where the first term is zero by (5) and second term is very
small because of (6), so we are done.

IV. UPPER BOUND FOR THE KEY GENERATION CAPACITY

In this section we use some of the notation introduced in
[5], [6]. In [5], Csiszar and Narayan consider the secrecy
capacity among m terminals who have access to a multi-
terminal correlated source where the ith terminal observes
random variable Xi. The terminals also can discuss over a
cost-free public channel. They assume that a subset A ⊆ M
of terminals want to share a common key which is possibly
required to be concealed from a subset D ⊆ Ac where
M = {0, · · · ,m − 1} and also from an eavesdropper who
listens to all the public discussions. For this setup the secrecy
capacity is referred to as private key capacity Csr

P (A,M |D)
and for D = ∅ as secret key capacity Csr

S (A,M).
They also consider another setup where there exists a

broadcast channel from T0 to the rest of terminals and the
possibility of discussion over a public channel for all terminals
[6]. As before, they assume that a subset A ⊆ M of terminals
want to share a common key which is possibly required to be
concealed from a subset D ⊆ Ac and from an eavesdropper
who listens to all the public discussions (but she doesn’t have
any observation from the broadcast channel output). Let us
denote the secrecy capacity in this case by Cch

P (A,M |D) and
for D = ∅ by Cch

S (A,M). Then [6, Theorem 4.1] relates the
source model and the channel model as follows.

Theorem 2 ([6, Theorem 4.1]): The PK (private key) ca-
pacity Cch

P (A,M |D) for A ⊆ M with privacy from a set
of terminals D ⊆ Ac is equal to the maximum over of
PK capacity of the corresponding emulated source model.
Specifically

Cch
P (A,M |D) = max

PX0

Csr
P (A,M |D).

The same result holds for SK (secret key) capacity by setting
D = ∅. In the source model the distribution of multi-terminal
source is

PX0,...,Xm−1(x1, . . . , xm) = PX0(x0)Q(x1, . . . , xm−1|x0),
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where Q(x1, . . . , xm−1|x0) is the transfer probability of the
broadcast channel.

In all the previous models the eavesdropper does not have
access to any side information from the multi-terminal source
or from the output of the broadcast channel. However, what
we are interested here is the case where she has also some
side information shown by random variable XE . In these
cases, for the channel setup, the secrecy capacity is denoted
by Cch

WP (A,M |D) and Cch
WS(A,M) in which “W” stands for

wiretap. The capacity Cch
WS(M,M) matches to the capacity

defined in Definition 2. Finding Cch
WP (A,M |D) for general

broadcast channels is still an open problem but [6, Lemma 5.1]
gives an upper bound for Cch

WP (A,M |D) and Cch
WS(A,M) as

follows.
Lemma 1 ([6, Lemma 5.1]): The PK (private key) capacity

Cch
WP (A,M |D), or the SK (secret key) capacity Cch

WS(A,M)
if D = ∅, for the model with wiretap side information (WSI)
(which means that Eve observes a random variable XE from
the broadcast channel output) is bounded above by the PK
capacity of the associated model without WSI. The associated
model contains an extra terminal Tm which has access the
the eavesdropper’s side information and participates in secrecy
generation. So the set A does not change but the set D
becomes D ∪ {m}.

Corollary 1: Using Lemma 1 and Theorem 2 we may write

Cch
WS(M,M) ≤ Cch

P (M,M ∪ {m}|{m})
= max

PX0

Csr
P (M,M ∪ {m}|{m}) .

In this work we are interested in an independent erasure
broadcast channel where

Q(x1, . . . , xm−1, xE |x0) = qE(xE |x0)
m−1∏

j=1

qj(xj |x0),

and each qj(·|·) is an erasure channel with parameter δ and
qE(·|·) is an erasure channel with parameter δE . As it is
explained in [5, Example 7] the input and output random
variables of this channel form a Markov chain on a tree (for
definitions and notation refer to [5, Section V]). So as it
explained in that example for this special case we have

Csr
P (A,M |D) = min

(i,j)∈E(G(A))
I(Xi;Xj |XD),

where G(A) denotes the smallest sub-tree of G whose vertex
set contains A. For the specific problem in this paper G(A)
is a star rooted at Alice (terminal T0).

Then, combining Corollary 1 and [5, Example 7] (as dis-
cussed above) we can conclude Theorem 3 as follows.

Theorem 3: The key generation capacity defined in Defi-
nition 2 can be upper bounded as follows

Cs ≤ max
p(x0)

min
j∈M/{0}

I(X0, Xj |XE)

≤ (1− δ)δE (L log2 q) .

Proof: As mentioned before, the first upper bound men-
tioned in the theorem is obtained by applying Corollary 1 and

[5, Example 7]. To obtain the second bound, we can write

I(X0, Xj |XE) = H(X0|XE)−H(X0|XE , Xj)

= [δE − δEδ]H(X0)

≤ (1− δ)δE (L log2 q) ,

where Xj , XE are random variables which are “erased” ver-
sions of X0, with erasure probabilities δ and δE respectively.
This concludes the theorem.

Combining Theorem 1 and Theorem 3 we have our main
result.

Corollary 2: The key generation capacity among m termi-
nals stated in §II-B is

Cs = (1− δ)δE (L log2 q) ,

where δ is the erasure probability from Alice to the rest of
terminals and δE is the erasure probability from Alice to Eve.
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APPENDIX

Lemma 2: Consider a set of n packets x1, . . . , xn, xi ∈
FL
q , where xi ∼ Uni(FL

q ) and all packets xi are independent
from each other. Assume that Eve has overheard nE of these
packets. Call the packets Eve has w1, . . . , wnE . Then it is
possible to create n′ = n − nE linear combinations of the
x1, . . . , xn packets over the finite field Fq , say y1, . . . , yn′ , in
polynomial time, so that these are secure from Eve, i.e.,

I(y1, . . . , yn′ ;w1, . . . , wnE ) = 0.

The same result holds with high probability (of order 1 −
O(q−1)) if the linear combinations are selected uniformly at
random over Fq .

Proof: Construct matrix X that has as rows the packets
x1, . . . , xn. Similarly, construct matrices Y and W that have
as rows the packets y1, . . . , yn′ and w1, . . . , wnE .
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Note that because the packets w1, . . . , wnE are by definition
a subset of the packets x1, . . . , xn, we can write W = AEX ,
with AE ∈ FnE×n

q that has zeros and ones as elements. We
will also construct the y packets as linear combinations of the
x packets over a field Fq . We will then have that Y = AX ,
where A ∈ F(n−nE)×n

q is the matrix we are interested in
designing. Thus we can write

[
Y
W

]
=

[
A
AE

]
X.

We now proceed by expanding H(Y |W ). We have

H(Y |W ) = H(Y,W )−H(W ) =

= [rk (B)− rk(AE)]L log2 q = [rk (B)− nE ]L log2 q,

where B =

[
A
AE

]
and L is the length of each packet xi.

Now the only way that we have H(Y |W ) = H(Y ) is that B
becomes a full rank matrix.

Using coding theory we will construct such a matrix B,
without knowing AE . All we know is that in each row of
AE there is only one 1 and the remaining elements are zero;
so all of the vectors in the row span of AE have Hamming
weight less than or equal to nE . Now, if we choose A to be
a generator matrix of an maximum distance separable (MDS)
linear code with parameters [n, n − nE , nE + 1]q then each
codeword has Hamming weight larger than or equal to nE+1
[10]. So the row span of A and AE are disjoint (except for
the zero vector) and the matrix B becomes full-rank for all
of matrices AE that have the aforementioned structure. For
example, we may select to use a generator matrix of a Reed-
Solomon code [10], which is an MDS code, over a field of
size q = n+ 1.

To prove the second assertion of the lemma, we note
that creating vectors yi uniformly at random is equivalent to
selecting the elements of matrix A independently uniformly
at random from the field Fq . In this case we can write

P [B is full-rank] =
(qn − qnE ) · · · (qn − qn−1)

qn(n−nE)

= 1−O(q−1),

which goes to 1 as q increases.
Lemma 3: Consider packets y1, . . . , yh and assume that

each one of m−1 receivers has observed a different subset of
these packets of size l. We can find h− l linear combinations
of the y packets, say z1, . . . , zh−l such that, each receiver can
use its observations and the z packets to decode all the y
packets.

Proof: This is a standard problem formulation in the
network coding literature, and any of the standard polynomial-
time approaches for network code design can be used [11].

Lemma 4: Consider a set of h packets y1, . . . , yh where
yi ∼ Uni(FL

q ) and assume that an eavesdropper Eve has
overheard linear combinations of h− l of these packets. Call
the packets Eve has z1, . . . , zh−l. Then it is possible to create

l linear combinations of the y1, . . . , yh packets, say k1, . . . , kl,
in polynomial time, so that these are secure from Eve, i.e.,

I(k1, . . . , kl; z1, . . . , zh−l) = 0.

The same result holds with high probability (probability of
order 1−O(q−1)) if the l packets ki are created uniformly at
random over Fq .

Proof: Similarly to the proof of Lemma 2, let Y , Z
and K be matrices that have as rows the packets y1, . . . , yh,
z1, . . . , zh−l and k1, . . . , kl. We can then write

[
K
Z

]
=

[
AK

AZ

]
Y,

where AZ is a given known matrix, since we know the
transmitted linear combinations, and we seek a matrix AK

such that, the matrix
[

AK

AZ

]
is full rank. Equivalently, we

seek vectors k1, . . . , kl that together with z1, . . . , zh−l form a
basis; we can do this using any of standard methods, such as
Gram-Schmidt orthogonalization.

Lemma 5: The value of the parameter l in Theorem 1
converges exponentially fast in n to its expected value.

Proof: Let us consider the random variables h, hi, and
l defined in §III. For convenience, we will work with the
normalized random variables h ! h/n, hi ! hi/n, and
l ! l/n. Let us also define the random variable η(i)j as follows

η(i)j =






1 if the jth x-packet is received
by Ti but not by Eve,

0 otherwise.

Then we can write hi =
1
n

∑n
j=1 η

(i)
j and we have µ = µi !

E
[
hi

]
= (1 − δ)δE . As defined before, we have also l =

mini hi.
To bound l, first observe that

E
[
l
]
= E



min
i

1

n

n∑

j=1

η(i)j



 = (1− δ)δE = µ.

Then for 0 < δ ≤ µ we can write

P
[
l ≥ µ+ δ

]
= P

[
hi ≥ µ+ δ : ∀i

]

= P
[
h1 ≥ µ+ δ

](m−1)

≤ exp

(
− (m− 1)δ2

3µ
n

)
,

where in the last inequality we use Chernoff bound [9,
Chapter 4]. On the other hand we can also write for 0 < δ ≤ µ

P
[
l ≤ µ− δ

]
≤ (m− 1)P

[
h1 ≤ µ− δ

]

≤ (m− 1) exp

(
− δ2

2µ
n

)
,

so we are done.
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