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Abstract—We consider multisource non-coherent network cod-
ing, where multiple sources send information to one or multiple
receivers. We prove that this is equivalent to a “subspace”
channel, that takes subspaces as inputs and outputs. We then
show that the rate of each individual receiver is upper bounded as
δi(T−δ1−δ2), whereδi is what we define to be the “dominating”
dimension in the subspace codebook of sourcei, and T is the
“coherence” time of the network.

I. I NTRODUCTION

We consider a network operating with network coding,
where intermediate nodes send linear combinations, chosen
uniformly at random, of their incoming packets. We are
interested in the case where more than one sources insert
information in the network, destined to one or more receivers.
This is often the case in wireless networks, for example during
operations such as topology discovery, or in applications such
as sensor networks.

We assume that neither the sources nor the receivers have
knowledge of the operations the intermediate nodes perform
(noncoherent communication). For this model, and the case
of a single source, use of subspace coding was proposed in
[1], [3], and capacity bounds were investigated in [4], [5],[7],
[8]. Algebraic code constructions for multiple sources were
recently investigated in [2].

In this paper we derive the (asymptotic) capacity region
for the case of two sources. We show that this region forms
a polytope with a finite number of corner points. We also
provide a simple achievability scheme.

The paper is organized as follows. Section II introduces our
notation, and Section III our model and main results. Section V
presents an outer bound on the achievable rates, and SectionIV
presents an achievability scheme that achieves the outer bound.

II. N OTATION AND DEFINITIONS

We here introduce the notation used in this paper. We use:

• a
.
= b for a andb functions of the size of a finite fieldFq

to imply that
logq a

logq b
goes to one as the size of the finite

field increases (similarly fora
.

≤ b).
• For subspacesπ1 andπ2, π1 ⊑ π2 implies thatπ1 is a

subspace ofπ2.
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• For subspacesπ1 andπ2, π1⊕π2 is the smallest subspace
that contains bothπ1 andπ2, namely,

π1 ⊕ π2 = {v1 + v2|v1 ∈ π1, v2 ∈ π2} .

• For a matrixx, 〈x〉 is the subspace spanned by rows of
x.

Definition 1: Grassmannian and Gaussian number.The
GrassmannianGr(T, d)q is the set of alld-dimensional sub-
spaces of theT -dimensional space over a finite fieldFq,
namely,

Gr(T, d)q , {π ⊑ FT
q : dim(π) = d}. (1)

The cardinality ofGr(T, d)q is the Gaussian number, namely,

G(T, d)q , |Gr(T, d)q|
.
= qd(T−d).

Definition 2: We defineS(T,m)q to be the set (sphere) of
all subspaces of dimension at mostm in the T -dimensional
spaceFT

q , namely

S(T,m)q ,

m⋃

d=0

Gr(T,m)q = {π ⊑ FT
q : dim(π) ≤ m}.

The cardinality ofS(T,m)q equals

s(T, d)q = |S(T, d)q|
.
=

m∑

d=0

qd(T−d).

Definition 3: We denote byψ(T, n, πd)q the number of
differentn×T matrices with elements in a fieldFq, such that
their rows span a specific subspaceπd ∈ FT

q of dimension
0 ≤ d ≤ min(n, T ).

For simplicity, we will drop the subscriptq in the previous
definitions.

III. M ODEL AND MAIN RESULTS

We consider a network with two transmitters (sources), a
single receiver1, and operation in timeslots (or generations,
in the network coding literature). In each timeslot, sourcei,
i = 1, 2, insertsmi packets in the network, each of lengthT
and with elements over a finite fieldFq. The receiver observes

1From the multicasting theorem in network coding, the same results hold
for the case of multiple receivers interested in the information from both
sources.



n uniform at random combinations of these packets. Following
[7], [8], we model the network operation at timeslotl as a
multiple access channel (MAC):

Y [ℓ] = H1[ℓ]X1[ℓ] +H2[ℓ]X2[ℓ]. (2)

EachHi, i = 1, 2, is ann×mi matrix, chosen uniformly at
random over all possible matrices of appropriate dimensions,
and i.i.d over different blocks. The packets that the sources
insert in the network and the receiver observes are collected
as rows of matricesX1, X2 andY , respectively. Equivalently,
eachXi is a matrix chosen fromX̃i , Fmi×T

q , the input
alphabet of thei-th source, andY is a matrix from the set
Ỹ , Fn×T

q . We can think ofT , the packet length, as the
coherence time of the network.

For the channel in (2), the transition probabilityPY |X1,X2

can be written as [7]

P̃Ỹ|X̃1X̃2
(y|x1, x2)

=

{
q−n dim(〈x1〉⊕〈x2〉) 〈y〉 ⊑ 〈x1〉 ⊕ 〈x2〉 ,
0 otherwise.

(3)

Note that

dim(〈x1〉⊕〈x2〉)=dim(〈x1〉)+dim(〈x2〉)−dim(〈x1〉∩〈x2〉).

Our first result is that this channel is equivalent to a
“subspace” channel, that has subspaces as inputs and outputs.

Lemma 1: The MAC channelCm−MAC described by (3) is
equivalent to the MAC channelCs−MAC with input alphabets
Xi = S(T,mi), for i = 1, 2, output alphabetY = S(T, n),
and transition probability

Pr(Y = πy|X1 = π1, X2 = π2)

=

{
ψ(T, n, πy)q−n dim(π1⊕π2) πy ⊑ π1 ⊕ π2,
0 otherwise.

(4)

The main contribution of this work is to derive the capacity
region of this channel.

Theorem 1:The capacity region of the channel in (4) for
T
2 > max(m1 +m2, n) is given by

R∗ , convex hull
⋃

(d1,d2)∈D∗

R(d1, d2),

such that

R(d1, d2) , {(R1, R2) : Ri ≤ Ri(d1, d2), i = 1, 2},

whereRi(d1, d2) , di(T − d1 − d2) for i = 1, 2, and

D∗ , {(d1, d2) : 0 ≤ di ≤ min(n,mi),

0 ≤ d1 + d2 ≤ min(n,m1 +m2)}. (5)

The rate regionR∗ is shown in Fig. 1 for a particular choice
of parameters. In the rest of the paper we prove Theorem 1.
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Fig. 1. The MAC regionR∗ for parametersm1 = 4, m2 = 3, n = 3,
T = 14.

IV. A CHIEVABILITY SCHEME

In this section we illustrate a simple achievability scheme
for the corner points of the rate region defined in Theorem 1.
It is clear that other points in the rate region can be achieved
using a time-sharing argument.

For given(d1, d2) ∈ D∗, define the following codebooks.

C̃1 ,

{
〈X1〉 : X1 =

[
Id1×d1 0d1×d2 U1

0(m1−d1)×d1
0(m1−d1)×d2

0(m1−d1)×(T−d1−d2)

]
,

U1 ∈ Fd1×(T−d1−d2)
q

}

and

C̃2 ,

{
〈X2〉 : X2 =

[
0d2×d1 Id2×d2 U2

0(m2−d2)×d1
0(m2−d2)×d2

0(m2−d2)×(T−d1−d2)

]
,

U1 ∈ Fd2×(T−d1−d2)
q

}
.

Transmitting messages from the codebooks, we have

Y = H1X1 +H2X2

=
[
H̃1 H̃2 H̃1U1 + H̃2U2

]
,

whereH̃i is the firstdi columns ofHi. Therefore, decoding at
the receiver would be just construction ofU1 andU2 having
H̃1U1 + H̃2U2, H̃1, andH̃2. Sinced1 + d2 ≤ n, the matrix
[H̃1 H̃2] is full-rank with high probability, and therefore the
decoder is able to decodeU1 andU2.

Note that the achievability scheme is effectively the coding
vectors approach [9]. This indicates that forT

2 > max(m1 +
m2, n) andq large enough, the subspace coding and the coding
vectors approach achieve the same rate.



V. OUTER BOUND ON THEADMISSIBLE RATE REGION

The goal of this section is to show that the rate pair(R1, R2)
of two users over the channel described by (2) cannot be
outside the regionR∗. We will give our proof in three steps.
First, we find two upper bounds forR∗ and then show that
their intersection is in fact a subset ofR∗.

Let Ropt be the optimal rate region for the MAC channel
(2). Then, by letting two transmitters to cooperate and using
the result of [8] for the non-coherent single source channelwe
have the following lemma.

Lemma 2: We haveRopt ⊆ Rcoop where

Rcoop , {(R1, R2) : R1 +R2 ≤ k(T − k)} ,

andk = min(m1 +m2, n).
In the rest of this section we will focus to derive another

upper bound which is denoted byRcol. This bound is based
on the number of messages per channel use that each user can
communicate over the multiple access channel provided that
n is large enough. It is clear that this assumption does not
restrict the rate region, because the more number of packets
the receiver receives, the better it can decode the messages.

For each time slott, letCi[t] be the codebook used by source
i. For a single source scenario, we showed in [8] that we can
use the setS(T,m) as our input alphabet for all time slots,
and have the receiver successfully decode the sent messages.
Thus the user can communicates(T,m) distinct messages.
For the multi-source scenarioXi[t] is more restricted. This is
because the transition probability of the channelPY |X1,X2

is
of the form PY |X1⊕X2

. Thus, if (X1, X2) ∈ X1 × X2 and
(X ′

1, X
′
2) ∈ X1 × X2 satisfyX1 ⊕X2 = X ′

1 ⊕X ′
2, then the

receiver cannot distinguish between them.
In the following we will bound the number of messages for

each receiver in this case. In order to do so, we start with
some useful definitions and lemmas. The proof of the lemmas
is presented in the Appendix.

Definition 4: For a fixedπ1 ∈ Gr(T, d1), we define

N (π1, d2, α) , {π2 ∈ Gr(T, d2) : dim(π1 ∩ π2) = α}. (6)

Lemma 3: The cardinality of the setN(π1, d2, α) is given
by

n(d1, d2, α) = |N(π1, d2, α)|
.
= qα(d1−α)+(d2−α)(T−d2). (7)

Note that since|N(π1, d2, α)| depends onπ1 only through
d1 = dim(π1), we have replaced it byd1.

Definition 5: For a fixed π1 ∈ Gr(T, d1) and π2 ∈
Gr(T, d2), we define

A(π1, π2) , {π′
2 ∈ Gr(T, d2) : π1 ⊕ π′

2 = π1 ⊕ π2}. (8)

Lemma 4: The cardinality of the setA(π1, π2) is given by

a(d1, d2, α) = |A(π1, π2)|
.
= qd2(d1−α), (9)

whereα = dim(π1 ∩ π2). Note that since|A(π1, π2)| only
depends on the dimension of two subspaces and their inter-
section, we can express it as a function ofd1, d2, andα.

Definition 6: For a setX ⊂ S(T,m), we denote the
projection ofX onto the set ofd-dimensional subspaces by
X (d). Formally,

X (d) , X ∩ Gr(T, d) = {X ∈ X : dim(X) = d}.

To communicate, each of our sources is going to use as
alphabet a set of subspaces. For two such sets of subspaces
X1 andX2, we can construct a table with|X1| rows and|X2|
columns, each row (column) corresponding to one subspacea
(b) in X1 (X2). A coloring for this table is an assignment of
colors to the cells of the table using a function col: X1×X2 →
N such that col(a, b) = col(a′, b′) if and only if a⊕b = a′⊕b′.

Theorem 2:For each uniquely decodable codeC defined on
some input alphabetX1×X2 for a multiple access channel and
for each time slott, there exist integer numbers0 ≤ di(t) ≤
mi such that

|Ci[t]|
.

≤ qδi(t)(T−δ1(t)−δ2(t)), i = 1, 2. (10)

Here Ci[t] denotes the restriction of the codeCi to its t-th
component.

Proof: We present the proof for a given fixedt, but
sometimes drop the time index for brevity. For a fixedt, let
δi be thedominatingdimension in the setXi, i.e.,

δi , arg max
d

|Xi(d)|,

where, from definition 6,Xi(d) contains all the d-dimensional
subspaces in the codebookXi. It is clear that

|Xi| =
∑

d

|Xi(d)| ≤ mi|Xi(δi)|
.
= |Xi(δi)|. (11)

By removing all subspaces fromX1 (X2) except the ones that
have dimensionδ1 (δ2) we loose only a constant factor in the
codebook size. Therefore the loss in the rate values would
be negligible asq grows. Consider the table constructed for
X1(δ1) and X2(δ2). Let π1 ∈ X1(δ1) be a δ1-dimensional
subspace, and consider the corresponding row of the table.
We further partition the columns of the table with respect to
π1 into

⋃min(δ1,δ2)
α=0 X2(π1, δ2, α), where

X2(π1, δ2, α) , {π2 ∈ X2(δ2) : dim(π1 ∩ π2) = α}. (12)

We useK(π1, δ2) andK(π1, δ2, α) to denote the number of
different colors in the row corresponds toπ1 and its intersec-
tion with X2(π1, δ2, α), respectively. Note thatX2(π1, δ2, α)
has at mostn(δ1, δ2, α) elements, where each color appears
a(δ1, δ2, α) times. Therefore the number of different colors in
this partition can be upper bounded as

K(π1, δ2, α) ≤
n(δ1, δ2, α)

a(δ1, δ2, α)

.
= q(δ2−α)(T−δ1−δ2+α). (13)



As a result,

K(π1, δ2) ≤

min(δ1,δ2)∑

α=0

K(π1, δ2, α)

.

≤

min(δ1,δ2)∑

α=0

q(δ2−α)(T−δ1−δ2+α)

.
= qmax0≤α≤min(δ1,δ2)(δ2−α)(T−δ1−δ2+α)

.
= qδ2(T−δ1−δ2)

where the last asymptotic equality holds sinceT ≥ 2(δ1 + δ2)
and the exponent is a decreasing function ofα for 0 ≤ α ≤
min(δ1, δ2).

This argument holds for each choice ofπ1. This means if
user1 transmits aδ1-dimensional subspace, the receiver cannot
distinguish more thatqδ2(T−δ1−δ2) different symbols. Thus the
number of decodable messages user2 can communicate is
upper bounded byqδ2(T−δ1−δ2). The same argument holds
for a fixed columnπ2 ∈ X2 which yields an upper bound to
the number of communicated messages asqδ1(T−δ1−δ2).

From Theorem 2 we have the following corollary.
Corollary 1: We haveRopt ⊆ Rcol where

Rcol , convex hull
⋃

(d1,d2)∈Dcol

R(d1, d2),

and Dcol , {(d1, d2) : 0 ≤ di ≤ mi}.

Proof: Using Theorem 2, it is clear that the number of
decodable pairs for each time instance is upper bounded by
(qR1 , qR2) for some (d1, d2) ∈ Dcol. Coding overL time
instance can only provide rates which are convex combina-
tions (time-sharing) of such(R1, R2), for different values of
(d1, d2) used for different time slots. Therefore the rate pair
cannot be outside of the region defined in the corollary.

By Lemma 2 and Corollary 1 we have already shown that
Ropt ⊆ Rcoop and Ropt ⊆ Rcol, respectively. Therefore
Ropt ⊆ Rcoop ∩ Rcol. We have shown the achievability of
R∗ in Section IV, so it only remains to prove the following
theorem.

Theorem 3:We haveRcoop ∩Rcol ⊆ R∗.
Proof: Let (R1, R2) ∈ Rcoop ∩ Rcol be a corner point

(note that since the convex hull is operating over a finite
number of sets, we can still talk about corner points). It is
clear that(R1, R2) is either a corner point ofRcol, or is a
middle point on the boundaries ofRcol andRcoop. For the
former case, being a corner point ofRcol, implies that it is
of the form (R1, R2) = (R1(d1, d2), R2(d1, d2)), for some
(d1, d2) ∈ Dcol. Also (R1, R2) ∈ Rcoop implies

R1 +R2 = (d1 + d2)(T − (d1 + d2)) ≤ k(T − k),

and therefored1 + d2 ≤ k, since f(x) , x(T − x) is an
increasing function forx ∈ (0, T/2). Hence(d1, d2) ∈ D∗,
and (R1, R2) ∈ R∗. We claim that the second case never
happens. The proof is given in Lemma 5 and Lemma 6.

Lemma 5: The set of corner points ofRcol is the set of all
rate pairs of the form(R1, R2) = (R1(d1, d2), R2(d1, d2)),
for some(d1, d2) ∈ D̃, where

D̃ = {(0,m2), (1,m2), . . . , (m1,m2),

(m1,m2 − 1), . . . , (m1, 1), (m1, 0)}.

Proof: We will show that any point
(R1(d1, d2), R2(d1, d2)) is dominated by the segment
connecting (R1(d1 + 1, d2), R2(d1 + 1, d2)) and
(R1(d1, d2 + 1), R2(d1, d2 + 1)). In order to show that,
we have to prove that there exists someλ ∈ [0, 1], such that

R1(d1, d2) < λR1(d1 + 1, d2) + (1 − λ)R1(d1, d2 + 1),

R2(d1, d2) < λR2(d1 + 1, d2) + (1 − λ)R2(d1, d2 + 1).
(14)

After a little simplification, (14) can be rewritten as

λ[T − d1 − d2 − 1] < d1,

(1 − λ)[T − d1 − d2 − 1] < d2,

or
d1

T − 1 − d1 − d2
< λ <

T − 1 − d1 − 2d2

T − 1 − d1 − d2
.

The last two inequalities can be satisfied for some choice ofλ
if and only if d1 + d2 < (T − 1)/2. Therefore any(d1, d2) ∈
Dcol with d1 < m1, d2 < m2, and d1 + d2 < (T − 1)/2,
cannot form a corner point, because otherwise(d1 + 1, d2)
and(d1, d2+1) also belong toDcol. Eliminating such(d1, d2)
from Dcol, we getD̃.

It is also easy to show that all of the rate pairs corresponding
to (d1, d2) ∈ D̃ are on the boundary ofRcol. This can be done
by comparing the slope of the connecting segment for two
consecutive points (according to the order they are appeared
in D̃). The slopes are

S{(R1(t,m2), R2(t,m2)); (R1(t+ 1,m2), R2(t+ 1,m2))}

= −
m2

T − 2t−m2 − 1
for 0 ≤ t ≤ m1

S{(R1(m1, t), R2(m1, t)); (R1(m1, t− 1), R2(m1, t− 1))}

= −
T − 2t−m1 − 1

m1
for 1 ≤ t ≤ m2.

It is easy to check that all the slopes are negative and they are
in a decreasing order. Therefore, no point in the setD̃ can be
an interior point.

Lemma 6: If Rcol * Rcoop, then any intersecting point of
R1 +R2 = k(T − k) with the boundary ofRcol is a point in
the set

D̃ ∪ {(m1 − 1, 0), . . . , (0, 0), (0, 1), . . . , (0,m2 − 1)}.

Proof: Note thatRcol * Rcoop impliesm1 + m2 > n.
SinceRcol is a convex region, its boundary intersect with the
line R1 + R2 = n(T − n) in exactly two points (it cannot
be only one point, otherwise it would be inside ofRcoop).
It is clear that the two corner points ofRcol, corresponding
to (d1, d2) = ((n − m2)

+,min(m2, n)) and (d1, d2) =
(min(m1, n), (n−m1)

+) lie on the lineR1+R2 = n(T −n).



Therefore this line cannot intersect with the boundary ofRcol

in any other point.

APPENDIX

Proof of Lemma 1:We know that to find the rate region
of theCm−MAC channel we should find out the convex hull
of union of the following sets of inequalities

Ri ≤
1

T
Im−MAC(Xi;Y |Xic), i = 1, 2, (15)

R1 +R2 ≤
1

T
Im−MAC(X1, X2;Y ), (16)

for all P̃X1X2(x1, x2) = P̃X1(x1)P̃X2 (x2).
Let us write Im−MAC(X1, X2;Y ) for the channel

Cm−MAC . We will show that it is equal to the same quantity
for thatCs −MAC channel.

Im−MAC(X1, X2;Y ) =

=
∑

x1∈ eX1,x2∈ eX2

y∈ eY

[
P̃Y |X1X2

(y|x1, x2)P̃X1 (x1)P̃X2 (x2)

log2

P̃Y |X1X2
(y|x1, x2)

P̃Y (y)

]
.

We know thatP̃Y |X1X2
(y|x1, x2) = P̃Y |X1X2

(y|x′1, x
′
2) where

〈xi〉 = 〈x′i〉 for i = 1, 2. So with an abuse of notation, we can
write the mutual information as

Im−MAC(X1, X2;Y ) =

=
∑

π1∈X1,π2∈X2

y∈eY

[
P̃Y |X1X2

(y|π1, π2)PX1(π1)PX2 (π2)

log2

P̃Y |X1X2
(y|π1, π2)

P̃Y (y)

]
,

where for i = 1, 2, we have PXi
(πi) ,∑

xi∈ eXi:〈xi〉=πi
P̃Xi

(xi) and P̃Y |X1X2
(y|π1, π2) ,

P̃Y |X1X2
(y|x1, x2) for somexi ∈ X̃i such that〈xi〉 = πi.

Then we have

Im−MAC(X1, X2;Y ) =

=
∑

π1∈X1,π2∈X2

PX1(π1)PX2 (π2)

n∑

dy=0

∑

πy∈Y
dim(πy)=dy

∑

y∈ eY
〈y〉=πy

P̃Y |X1X2
(y|π1, π2) log2

P̃Y |X1X2
(y|π1, π2)

P̃Y (y)
.

Again we can use the property of channel transition matrix
where for everyπ1 and π2 we haveP̃Y |X1X2

(y1|π1, π2) =

P̃Y |X1X2
(y2|π1, π2) if 〈y1〉 = 〈y2〉. So we factor the term in

front of summation overy and write

Im−MAC(X1, X2;Y ) =

=
∑

π1∈X1,π2∈X2

PX1(π1)PX2(π2)

n∑

dy=0

∑

πy∈Y
dim(πy)=dy

ψ(T, n, dy)P̃Y |X1X2
(y|π1, π2) log2

P̃Y |X1X2
(y|π1, π2)

P̃Y (y)
,

for some y : 〈y〉 = πy. Defining PY |X1X2
(πy |π1, π2) ,

ψ(dim(〈y〉))P̃Y |X1X2
(y|π1, π2) whereπy = 〈y〉 we have

Im−MAC(X1, X2;Y ) =

=
∑

π1∈X1,π2∈X2

∑

πy∈Y

PY |X1X2
(y|π1, π2) log2

PY |X1X2
(πy |π1, π2)

PY (πy)

=Is−MAC(X1, X2;Y ).

A similar arguments shows the equality between mutual in-
formation of the two channelsCm−MAC andCs−MAC .

Proof of Lemma 3: There areG(d1, α)
.
= qα(d1−α)

different choices for the intersection ofπ1 andπ2. We have
to choosed2 − α basis vectors for the rest of the subspace.
This can be done in(

qT − qd1
) (
qT − qd1+1

)
. . .

(
qT − qd1+d2−α−1

)

(qd2 − qα) (qd2 − qα+1) . . . (qd2 − qd2−1)
.
= q(d2−α)(T−d2)

ways.
Proof of Lemma 4:Defineπ = π1⊕π2, wheredim(π) =

dim(π1) + dim(π2) − dim(π1 ∩ π2) = d1 + d2 − α , d. The
proof of this lemma is similar to that of Lemma 3, unless we
can only choose the lastd2 − α basis vectors fromπ instead
of FT

q . Therefore replacingT in Lemma 3 withd, we have

a(π1, π2)
.
= qα(d1−α)+(d2−α)(d−d2) = qd2(d1−α). (17)
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