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Abstract— The min-cut value towards a single receiver in a
network with unit capacity edges can be achieved by routing a
single bit. The multicast theorem in network coding shows that,
the common min-cut value towardsN ≥ 1 receivers can also
be achieved using packets of lengthlog N bits, if the operations
the intermediate nodes perform are deterministically known at
the receivers. We here calculate the capacity in the case where
these operations are unknown, and characterize how the capacity
depends on the min-cut value and the packet length.

I. I NTRODUCTION

The min-cut value towards a single receiver in a network
with unit capacity edges can be achieved by routing a single
bit. Linear network coding, introduced in [1], demonstrated
that with linear operations at intermediate nodes, one can
achieve the common min-cut value when multicasting toN ≥
1 receivers by using packets oflog N bits. However, this result
assumes that the receivers know perfectly the operations that
the network nodes perform. In practical networks, where such
deterministic knowledge is not sustainable, the most popular
approach is to append coding vectors at the headers of the
packets to keep track of the linear combinations of the source
packets they contain. This results in a loss of information rate
with respect to the min-cut value. In a sense, this is akin to
training symbols to learn the transformation induced by the
network. Recently, algebraic subspace coding constructions
have been proposed as a method that allows to achieve higher
information rates by dispensing of the need for the coding
vector overheads [3]. In this paper we examine what are the
information theoretical rates that can be achieved in a network
where the intermediate node operations are unknown.

We consider a network where neither the source nor the
receivers have knowledge of the network topology or of the
linear coding operations the network nodes perform. In [6] we
proposed a model to capture this communication, where the
source inserts in the networkm packets of lengthT over some
finite fieldFq, and each receiver collectsn packets that consist
of random combinations of the source packets. For this model,
we proved that the source can communicate information to the
receivers through the choice of the subspaces it employs, since
subspaces are preserved under linear transformations, as was
also observed in [3]. We also calculated the capacity for the
case whereT > min(m, n)+ n. We here complete this work
by determining the capacity for all values ofm, n andT . This
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capacity is characterized for all regimes by:

1

T

[1{T :odd} + i∗(T − i∗) log2 q + O(q−1 log q)
]
,

where i∗ = min{m, n, ⌊T/2⌋}. Therefore, we see that for
q ≫ 1, the capacity behaves likei∗(1 − i∗

T
) log2 q, for all

ranges ofT . Note that this rate is achievable for multicast
information flow.

When T becomes very large, the capacity approaches the
min-cut valuemin{m, n} log2 q, as expected. Interestingly,
when T is small, the capacity is achieved (forq ≫ 1) by
using subspaces across multiple dimensions. This is in direct
contrast to the current constructions of subspace codes that
utilize a single dimension subspaces to encode the information
messages [2], [8], [9]. Our result demonstrates that such
constructions are optimal only whenT ≥ min{m, n} + n,
while in regimes for small packet sizes, it is optimal to utilize
subspaces of multiple dimensions, and the dimensions used
vary with the relative values ofm, n and T . Another direct
implication of our work is that, forT2 ≥ n = m, subspace
coding does not offer benefits as compared to the coding
vectors approach. Finally, our work can be directly extended
in networks with packet erasures.

Recently, Silvaet al. [10] independently and subsequent
to our work in [6], considered a probabilistic model for
noncoherent network coding which is an extension of the
model introduced in [9]. In this model the transfer matrix is
square (m = n) and is uniformly at random selected among
all full rank n× n matrices. This is in contrast to our model,
where the elements of the transfer matrix are chosen uniformly
at random, and thus the transfer matrix itself may not have
full rank. For the case whereT ≥ 2n, which is the only case
considered in [10], and forq → ∞, the capacity value of both
approaches coincide.

II. T HE NONCOHERENT FINITE FIELD CHANNEL MODEL

We consider a network where nodes perform random linear
network coding over a finite fieldFq. We assume that time is
slotted and the channel is block time-varying. At time slott,
the receiver observes

Y (t) = G(t)X(t), (1)

where X(t) ∈ Fm×T
q , G(t) ∈ Fn×m

q , and Y (t) ∈ Fn×T
q .

At each timeslot, the receiver receivesn packets of lengthT
(captured as rows of matrixY (t)) that are random linear com-
binations of them packets injected by a source (captured as



rows of matrixX(t)). The packet lengthT can be interpreted
as the coherence time of the channel, during which the transfer
matrix1 G remains constant. Each element of the transfer
matrix G is chosen uniformly at random fromFq, changes
independently from timeslot to timeslot, and is unknown to
both the source and the receiver.2

The channel described by (1) can be interpreted as a discrete
memoryless channel with input alphabetX , Fm×T

q and
output alphabetY , Fn×T

q . As mentioned in [6] the model
in (1) along with a uniform distribution for matricesG is
information stable, so the capacity of this channel is givenby

C =
1

T
sup

PX(x)

I(X ; Y ), (2)

wherePX(x) is the input distribution. To achieve the capacity
a coding scheme may employ the channel (1) multiple times,
and a codeword is a sequence of input matrices fromX . For a
coding strategy that induces an input distributionPX(x), the
achievable rate is

R =
1

T
I(X ; Y ).

Fig. 1. Active subspace dimensions form = 4, n = 3.

III. M AIN RESULTS

Our main theorem 1 allows to characterize the capacity for
noncoherent network coding. We show that the capacity is
achieved through subspace coding, where the information is
communicated from the source to the receivers through the
choice of subspaces.

Theorem 1:Consider the channel given in (1) and assume
that G is drawn uniformly at random fromFn×m

q and inde-
pendently from block to block. Then there exists finiteq0 such
that for q > q0 the optimal input distribution is non-zero only
for the matrices whose rank belongs to

A =
{
min[(T − n)+, m, n, T ], . . . , min[m, n, T ]

}
, (3)

which we call the active set. The capacity of the channel is

C =
1

T

[
log2

(
∑

i∈A

qi(T−i)

)
+ 1{T :odd} + O(q−1 log q)

]

=
1

T

[1{T :odd} + i∗(T − i∗) log2 q + O(q−1 log q)
]
, (4)

where i∗ = arg mini∈A |T/2 − i| = min{m, n, ⌊T/2⌋}.
Moreover, the optimal input distribution is uniform over all

1In the rest of the paper we will omit for convenience the time index t.
2In general, the topology of the network imposes some constraints on the

transfer matrixG (see for example [4]). However, we believe that this is a
reasonable model, especially for large scale dynamically changing networks.

matricesX of the same dimension, and the probability of
employing matricesX of rank i equals

α∗
i (x) = 2−Cqi(T−i)

[
1 + O(q−1 log q)

]
, ∀i ∈ A, (5)

whereC is the capacity of the channel.
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Fig. 2. Numerical calculation of the capacity for small values of q and
m = 11, n = 7. The dotted line depictsi∗(T − i∗).

This result can be directly extended to packet erasure
networks. We model erasures by assuming that the receivers
observes a number of packetsn, where nown is a random
variable with a given distribution.

Corollary 1: Consider the model in (1) but now assume that
n is a random variable with a known distribution. Then

C =

m∑

i=0

i(T − i) log2 q Pr(n = i)

+ m(T − m) log2 q Pr(n > m).

From Theorem 1, the capacity behaves asi∗(1−i∗/T ) log q,
for large q. However, numerical simulations indicate a very
fast convergence to this value asq increases. Fig. 2 depicts
the capacity for small values ofq, calculated using using the
Differential Evolution toolbox for matlab [11].

We can now derive the following guidelines for network
code design.

1) Choice of subspaces:The optimal input distribution
uses subspaces of a single dimension equal tomin{m, n} for
T ≥ min{m, n}+n. As T reduces, the set of used subspaces
gradually increases, by activating one by one smaller and
smaller dimensional subspaces, until, forT ≤ n, all subspaces
are used with equal probability. Fig. 1 pictorially depictsthis
gradual inclusion of subspaces.

2) Values of m and n:For a given and fixed packet length
T , the optimal value ofm and n equalsm = n = ⌊T/2⌋.
(optimality is in the sense of minimum required to achieve the
maximum information transfer for thisT ). For fixedT andm,
the optimal value ofn equalsn = min{m, ⌊T/2⌋}. For fixed
T andn, the optimal value ofm equalsn = min{n, ⌊T/2⌋}.

TABLE I

INFORMATION LOSS FROM USING CODING VECTORS WHENn ≥ m.

T ≤ m m < T < 2m T ≥ 2m

C − Rcv C [m − ⌊T/2⌋]2 log2 q 0



3) Subspace coding vs. coding vectors:A natural question
is, for what regimes using coding vectors [2] is far from the
optimal solution. Table I summarizes this difference. We see
that for ⌊T/2⌋ ≥ m = n, subspace coding does not offer
benefits as compared to the coding vectors approach. Table
I is calculated as follows. The achievable rateRcv using
coding vectors equalsRcv , m(T − m) log2 q, where each
packet includes a coding vector of lengthm andT − m > 0
information symbols. Clearly,Rcv is nonzero only forT > m,
and equals zero for the casesT ≤ m or n < m. Assuming
T > m andn ≥ m for largeq we can write

C − Rcv = [(m − ∆)(∆ + m − T )] log2 q,

where∆ = min{m, n, ⌊T/2⌋}. It can be easily shown that
for m > ⌊T/2⌋ we have a loss of

C − Rcv = [m − ⌊T/2⌋]
2
log2 q,

while for m ≤ ⌊T/2⌋ the loss is zero.

IV. T HE CHANNEL CAPACITY

We will use the following notation. Let the Grassmannian
Gr(i, V ) denotes the set of alli-dimensional subspaces of a
finite-dimensional vector spaceV . We useGq(T, d), or more
convenientlyG(T, d), to denote the Gaussian binomial, the
number of distinctd-dimensional subspaces ofFT

q .

A. Simplified Mutual Information

In this subsection we express the mutual information in a
simplified form. Since the rows ofG are chosen independent
of each other, conditioned on sending some matrixX = x, the
rows of the received matrixY are independent of each other
among all the vectors in the row span ofx. The independence
of rows of Y let us write the conditional probability ofY
given X as

PY |X(y|x) =

{
q−n dim(〈x〉) 〈y〉 ⊆ 〈x〉 ,
0 otherwise,

(6)

where x ∈ X , y ∈ Y, and 〈y〉 ⊆ 〈x〉 states that〈y〉 is a
subspace of〈x〉.

The mutual informationI(X ; Y ) betweenX andY can be
written as a function ofPX(x) andPY |X(y|x) as

I(X ; Y ) =
∑

x∈X ,
y∈Y

PX(x)PY |X(y|x) log2

(
PY |X(y|x)

PY (y)

)
. (7)

It is clear from (6) thatPY |X(y|x1) = PY |X(y|x2) for all
x1, x2 ∈ X such that〈x1〉 = 〈x2〉. Similarly the transition
probabilities in (6) can be rewritten as

PY |X(y|πx) =

{
q−n dim(πx) 〈y〉 ⊆ πx,
0 otherwise,

(8)

wherePY |X(y|πx) , Pr(Y = y| 〈X〉 = πx). Hereπx ∈ X̃
where

X̃ ,

T⋃

i=0

Gr
(
i,FT

q

)
.

Note that with an abuse of notation we have usedPY |X(y|·)
to denote two different functions (6) and (8). These two
properties allow us to express the mutual information in (7)
as stated in the following lemma

Lemma 1:Finding the capacity of the channel in (1) is
equivalent to maximizing

I(X ; Y ) =
∑

πx∈ eX ,
y∈Y

PX(πx)PY |X(y|πx) log2

(
PY |X(y|πx)

PY (y)

)
,

(9)
over all choices ofPX(πx) , Pr(〈X〉 = πx).

The following lemma states that the optimal solution should
be uniform over all subspaces with the same dimension, as
expected from the symmetry of the channel.

Lemma 2:The input distribution that maximizesI(X ; Y )
is the one which is uniform over all subspaces having the same
dimension.

Proof: Let PX(πx) be the optimal input distribution of
the channel with transition probabilities given in (8). Fora fix
dimension0 ≤ d ≤ min(m, T ), and an arbitrary permutation

σ : {1, 2, . . . . ,G(T, d)} → {1, 2, . . . . ,G(T, d)}

which acts on subspaces of dimensiond, definePσ(πx) as

Pσ(πx) =

{
PX(σ(πx)) if dim(πx) = d,
PX(πx) if dim(πx) 6= d.

Also defineP ∗(πx) = 1
G(T,d)!

∑
σ Pσ(πx) where the summa-

tion is over all possible permutations. Rewriting the mutual
information in (9) as a function of the input distribution and
the transition probabilities,I(PX(πx), PY |X(y|πx)), we have

I(P ∗(πx),PY |X(y|πx))

= I

(
1

G(T, d)!

∑

σ

Pσ(πx), PY |X(y|πx)

)

(a)

≥
1

G(T, d)!

∑

σ

I(Pσ(πx), PY |X(y|πx))

(b)
= I(PX(πx), PY |X(y|πx))

where (a) is due to concavity of the mutual information
with respect to the input distribution, and(b) holds because
I(Pσ(πx), PY |X(y|πx)) = I(PX(πx), PY |X(y|πx)) for all σ,
since the permutation only permutes the terms in a summation
in (9).

Note that P ∗(πx) assigns equal probabilities to all sub-
spaces with dimensiond, and above-mentioned inequality
shows that it is as good as the optimal input distribution. A
similar argument holds for all0 ≤ d ≤ min(m, T ). Therefore,
a dimensional-uniform distribution achieves the capacityof the
channel.

Lemma 2 shows that the optimal input distribution can be
expressed as

Pr (〈X〉 = πx) =
αr

G(T, r)
, (10)



where r = dim(πx) and αr = Pr(dim(〈X〉) = r) and we
have

∑min(m,T )
r=0 αr = 1.

Assuming the optimal input probability distribution of the
form (10), the probability of receiving a specific matrixY = y
at the receiver can be written as

PY (y) =
1

G(T, dy)

min(m,T )∑

dx=dy

G(dx, dy)q−ndxαdx
, (11)

that showsPY (y) only depends ondy = dim(〈y〉). Therefore,
havingPY (y) only depends ondy and replacing (10) in (9),
we get

I = −

min(m,T )∑

dx=0

αdx
ndx log2 q (12)

−

min(m,T )∑

dx=0


αdx

min(n,dx)∑

dy=0

Sdy
G(dx, dy)q−ndx log2 (PY (y))


 ,

where Sdy
is the number of differentn × T matrices overFq that their rows span a specific subspaceπ ∈ FT

q with
dimension0 ≤ dy ≤ min(n, T ).

B. The Optimal Solution: Approach

As stated in the last subsection, the problem of finding the
optimal input distribution is reduced to finding the optimal
choice for αi, i = 0, . . . , min(m, T ). Note that the mutual
information is a concave function with respect toαi’s. This
allows us to use the Kuhn-Tucker theorem [5] to solve the
convex optimization problem. According to this theorem, the
maximizing values, denoted byα∗

i satisfy




∂I(X;Y )
∂αk

∣∣∣
α∗

i

= λ ∀k : α∗
k > 0,

∂I(X;Y )
∂αk

∣∣∣
α∗

i

≤ λ ∀k : α∗
k = 0,

(13)

for some constantλ where
∑min(m,T )

i=0 α∗
i = 1.

By taking the partial derivative of the mutual information
with respect toαk, we have

I ′k ,
∂I(X ; Y )

∂αk

= −nk log2 q (14)

−

min(n,k)∑

dy=0

Sdy
G(k, dy)q−nk log2 (PY (y)) − log2 e,

wherePY (y) is given in (11). Multiplying both sides of (14)
by αk and summing overk we get

I − log2 e =

min(m,T )∑

k=0

αkI ′k.

By choosing the optimal valuesαk = α∗
k for 0 ≤ k ≤

min(m, T ), the RHS becomesλ, and the mutual information
increases toC. So we may write

λ = C − log2 e.

C. Solution for Large Field Size

For the rest of this paper, we focus on large size fields,
q ≫ 1. This assumption allows us to use some approximations
to simplify the conditions in (13). For example, by absorbing
log2 e in λ, one can rewritẽIk , I ′k + log2 e for largeq as

Ĩk = −nk log2 q (15)

−

min(n,k)∑

dy=0

(
1 + O(q−1)

)
q−(n−dy)(k−dy) log2 (PY (y)) ,

where we have used the asymptotic expressionsG(k, dy) =
qdy(k−dy)

(
1 + O(q−1)

)
and Sdy

= qndy
(
1 + O(q−1)

)
[7].

Using similar approximations,log2 PY (y) in (11) can be
rewritten as

log2 (PY (y)) = − dyT log2 q + O(q−1)

+ log2




min(m,T )∑

dx=dy

q−(n−dy)dxαdx




=Θ(log q). (16)

Using (16) one can conclude that the dominating term in the
summation in (15) is the one obtained fordy = min(n, k).
Since, the remaining terms are of orderq−1 log q, we can write

Ĩk =[T min(n, k) − nk] log2 q + O(q−1 log q)

− log2




min(m,T )∑

dx=min(n,k)

q−[n−min(n,k)]dxαdx


 . (17)

Therefore, the Kuhn-Tucker conditions can be rewritten as

min(m,T )∑

dx=min(n,k)

q−[n−min(n,k)]dxαdx
≥

2−C+O(q−1 log q)q[T min(n,k)−nk],

where the inequality holds with equality for allk with α∗
k > 0.

Let δ , min(m, T ) and define the(δ + 1)× (δ + 1) matrix
A with elements

Aij ,

{
q−[n−min(n,i)]j min(n, i) ≤ j ≤ δ,
0 otherwise.

(18)

We also define the column vectorb with elementsbi ,

q[T min(n,i)−ni] for 0 ≤ i ≤ δ. Note that for convenience the
indices of matrixA and vectorb start from0. Using these
definitions, we are able to rewrite the Kuhn-Tucker conditions
in the matrix form as

Aα
∗ � 2−C+O(q−1 log q)

b, (19)

where we use “�” to denote element-wise inequality for the
vectors, andα∗ is the vector of the optimum probabilities of
choosing subspaces of certain dimension. In the following,we
consider two cases forδ ≤ n andδ > n, and findα

∗ for each
of them, separately.



First case: δ ≤ n. In this case we can explicitly write the
matrix A and vectorb as

A =




1 q−n · · · q−(δ−1)n q−δn

0 q−(n−1) · · · q−(δ−1)(n−1) q−δ(n−1)

0 0 · · · q−(δ−1)(n−2) q−δ(n−2)

...
...

. . .
...

...
0 0 · · · q−(δ−1)(n−δ+1) q−δ(n−δ+1)

0 0 · · · 0 q−δ(n−δ)




,

and
b =

[
1 q(T−n) · · · qδ(T−n)

]T
.

The fact that the expression inside thelog(·) function in
(17) is non-zero fork = δ, forcesα∗

δ to be positive. Thus the
last row of the matrix inequality in (19) should be satisfied as
an equality. Therefore,

α∗
δ =qδ(T−δ)2−C+O(q−1 log q).

The following lemma helps to find the behavior of the
optimal input distribution. We include the proof in [7].

Lemma 3:Let δ ≤ n andα
∗ be the optimal solution of the

Kuhn-Tucker conditions in (19). Thenα∗
j > 0 impliesα∗

i > 0
for j ≤ i ≤ δ.
Using this lemma, it is easy to verify that there exists some
0 ≤ κ ≤ δ, where the inequalities in (19) indexed byκ ≤
j ≤ δ hold as equality. Moreover,α∗

i = 0 for 0 ≤ i < κ.
Therefore, one can solve the set of equations recursively, and
show that

α∗
i =

{
qi(T−i)2−C+O(q−1 log q) : κ ≤ i ≤ δ,
0 : 0 ≤ i < κ,

(20)

and it only remains to determineκ. Sinceα∗
κ−1 = 0, we can

rewrite the inequality indexed byκ − 1 as

δ∑

j=κ

q−(n−κ+1)jα∗
j ≥ q(κ−1)(T−n)2−C+O(q−1 log q).

Replacingα∗
j from (20), we get

q(κ−1)(T−n)2−C+O(q−1 log q)




δ∑

j=κ

q(T−n−j)(j−κ+1) − 1


 ≥ 0,

which holds if and only if(T − n − j)|j=κ ≥ 0. Sinceκ is
the largestℓ whereα∗

ℓ−1 = 0, we haveκ = min[(T −n)+, δ].
Second case:δ > n. We now write matrixA and vectorb as

A =

2

6

6

6

6

6

6

6

6

6

6

4

1 q−n
· · · · · · · · · · · · q−δn

0 q−(n−1)
· · · · · · · · · · · · q−δ(n−1)

...
. . .

. . .
...

...
...

...
0 · · · 0 q−(n−1) q−n

· · · q−δ

0 · · · 0 0 1 · · · 1
...

. . .
...

...
...

. . .
...

0 · · · 0 0 1 · · · 1

3

7

7

7

7

7

7

7

7

7

7

5

,

and

b = [ 1 q(T−n) ··· q(n−1)(T−n) qn(T−n) qn(T−n−1) ··· qn(T−δ) ]
T

.

The lastδ−n+1 rows ofA are the same whilebi is decreasing
with i for i ≥ n. Thus, the lastδ − n inequalities are strict
and therefore,

α∗
n+1 = · · · = α∗

δ = 0. (21)

The remaining equations can simply be reduced to the fist
case. Define

Ã =




1 q−n · · · q−(n−1)n q−n2

0 q−(n−1) · · · q−(n−1)(n−1) q−n(n−1)

0 0 · · · q−(n−1)(n−2) q−n(n−2)

...
...

. . .
...

...
0 0 · · · q−(n−1) q−n

0 0 · · · 0 1




,

and
b̃ =

[
1 q(T−n) · · · qn(T−n)

]T
.

The remaining conditions in this case can be written as

Ãα∗ � 2−C+O(q−1 log q)
b̃, (22)

which is exactly similar to (19), forδ = n. Therefore,
the optimal solution for the first case will also satisfy these
conditions,i.e.,

α∗
i =

{
qi(T−i)2−C+O(q−1 log q) κ ≤ i ≤ n,
0 0 ≤ i < κ,

(23)

with κ = min[(T − n)+, n]. Summarizing (21) and (23), we
can obtain the optimal solution for this regime, as

α∗
i =





0 n < i ≤ δ,

qi(T−i)2−C+O(q−1 log q) κ ≤ i ≤ n,
0 0 ≤ i < κ,

whereκ = min[(T − n)+, n]. This concludes the proof.
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