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Abstract— The min-cut value towards a single receiver in a capacity is characterized for all regimes by:
network with unit capacity edges can be achieved by routing a 1
single bit. The multicast theorem in network coding shows tht, — [ypoaq + (T —i*) 1o +0O(¢ o
the common min-cut value towards N > 1 receivers can also T [ {Todd} ( ) 824 (q gq)] ’
be qchleved using packets of lengthog N bltfs,.lf.the operations . pere v min{m, n, | T/2|}. Therefore, we see that for
the intermediate nodes perform are deterministically known at h itv beh like T f I
the receivers. We here calculate the capacity in the case wiee ¢ => 1, the capacity behaves i g(l - 7)log, g, for al
these operations are unknown, and characterize how the capy ~ ranges ofT. Note that this rate is achievable for multicast

depends on the min-cut value and the packet length. information flow.
When T' becomes very large, the capacity approaches the
I. INTRODUCTION min-cut valuemin{m,n}log, ¢, as expected. Interestingly,

. . . . when T is small, the capacity is achieved (fgr>> 1) b
The min-cut value towards a single receiver in a network pacty (fgr> 1) by

ith unit itv ed b hieved b " ; %sing subspaces across multiple dimensions. This is irctdire
with unit capacity edges can be achieved by Touling a SINQ, ot 1o the current constructions of subspace codés tha
bit. Linear network coding, introduced in [1], demonstthte

o . . : utilize a single dimension subspaces to encode the infoomat
that with linear operations at intermediate nodes, one Cﬁﬂassages [2], 8], [9]. Our result demonstrates that such
achieve the common min-cut value when multicastingvto> o ’

. . . . constructions are optimal only whefi > min{m,n} + n,
1 receivers by using papkets big ' bits. However, this rgsult hile in regimes for small packet sizes, it is optimal toiaél
assumes that the receivers know perfectly the operatiats t

th twork nod ‘ | tical networks. wheré: ubspaces of multiple dimensions, and the dimensions used
€ network nodes pertorm. in practical NEtworks, wher Su\(;ary with the relative values ofn, n andT'. Another direct

deterministic knowledge is not sustainable, the most |cmpu| lication of our work is that, for% > 1 — m, subspace

approach is to append coding vectors at the headers of ﬂging does not offer benefits as compared to the coding

pacte;s EE keepnttrai(r:]k _(If;ithf Ilnel.\tarigorr}bman;)innsf Orfn;[h;;) lr” ‘ectors approach. Finally, our work can be directly extende
packets they contain. This results in a 1oss ot informa in networks with packet erasures.

Wit_h respect to the min-cut value. In a sense, this is akin to Recently, Silvaet al. [10] independently and subsequent
training symbols to learn the transformation induced by t & our work in [6], considered a probabilistic model for

network. Recently, algebraic subspace coding CONSIENQ) - oherent network coding which is an extension of the
have been proposed as a method that allows to achieve hl%

information rates bv dispensing of the need for the codin Bdel introduced in [9]. In this model the transfer matrix is
y cIspensing . uare f» = n) and is uniformly at random selected among
vector overheads [3]. In this paper we examine what are t

information theoretical rates that can b hieved in a oW alf full rank n x n matrices. This is in contrast to our model,
ormation theoretical rates that can be achieve a where the elements of the transfer matrix are chosen unijorm
where the intermediate node operations are unknown.

. ) at random, and thus the transfer matrix itself may not have
We consider a network where neither the source nor tlﬂcﬂl rank. For the case wherE > 2n, which is the only case

receivers have knowledge of the network topology or of trlﬁ)nsidered in [10], and foy — oo, the capacity value of both
linear coding operations the network nodes perform. In [6] pproaches coincide

proposed a model to capture this communication, where the
source inserts in the network packets of lengtf” over some  [I. THE NONCOHERENT FINITE FIELD CHANNEL MODEL

finite field F,, and each receiver collectspackets that consist We consider a network where nodes perform random linear
of random combinations of the source packets. For this mod ; T .

P ; X Liwork coding over a finite fieldl,. We assume that time is
we proved that the source can communicate information to t Bited and the channel is block time-varying. At time slot
receivers through the choice of the subspaces it emplayss si ; '

i ! the receiver observes
subspaces are preserved under linear transformationsags w
also observed in [3]. We also calculated the capacity for the Y(t)=Gt)X(1), 1)
case wherd" > min(m,n) +n. We here complete this work

mxT nxm nxT
by determining the capacity for all valuesof n andT’. This Where X(¢) € Fi%, G(t) € Fg=™, and Y (z) € Fg*".

At each timeslot, the receiver receivegackets of lengtty’
This work was supported by the Swiss National Science Fdigmdander (c_;aptpred as rows of matm(t(?)) that are random linear com-
award PP002-110483 and by the EU projects NetReFound (P634413). binations of them packets injected by a source (captured as



rows of matrix X (¢)). The packet lengti” can be interpreted matrices X of the same dimension, and the probability of
as the coherence time of the channel, during which the ®ansémploying matricesX of ranki equals
matrix* G remains constant. Each element of the transfer S
matrix G is chosen uniformly at random froffi,, changes o (z) =2 ¢~ [1+ O(¢ ' logq)], Vi€ A, (5)
independently from timeslot to timeslot, and is unknown to
both the source and the receider. whereC' is the capacity of the channel.

The channel described by (1) can be interpreted as a discrete
memoryless channel with input alphab&t £ [FZI"XT and

output alphabep) £ [FZ;XT. As mentioned in [6] the model 40P T=13
in (1) along with a uniform distribution for matrice§ is N
i i i i is gi 30( T=10
information stable, so the capacity of this channel is gibgn c_?
1 O 20t _
C == sup I(X;Y), @ ° T=7

PX (I) 10 F A‘ 1 1 1 1
wherePx (z) is the input distribution. To achieve the capacit 2 4 6 8 10
a coding scheme may employ the channel (1) multiple time log,q

and a codeword is a sequence of input matrices fAdnkror a

coding strategy that induces an input distributiBr (z), the Fig. 2. Numerical calculation of the capacity for small \esuof ¢ and
achievable rate is m = 11, n = 7. The dotted line depicts* (7" — *).

R— lI(X;Y). This result can be directly extended to packet erasure
networks. We model erasures by assuming that the receivers
observes a number of packets where nown is a random

0o 1 2 3 4 0o 1 2 3 4 0o 1 2 3 4 variable with a given distribution.

-:-j D:-j Dj]j Corollary 1: Consider the model in (1) but now assume that

n is a random variable with a known distribution. Then

T<n n <T <min{m,n} +n min{m,n} +n<T
m
Fig. 1. Active subspace dimensions for = 4, n = 3. C= Z i(T' — i) logy g Pr(n = i)
i=0
+m(T —m)log, g Pr(n > m).
HI. MAIN RESULTS From Theorem 1, the capacity behaves'ds —i*/T) log g,

Our main theorem 1 allows to characterize the capacity fégr large ¢. However, numerical simulations indicate a very
noncoherent network coding. We show that the capacity f@st convergence to this value asincreases. Fig. 2 depicts
achieved through subspace coding, where the informationth¢ capacity for small values @f calculated using using the
communicated from the source to the receivers through tRéferential Evolution toolbox for matlab [11].

choice of subspaces. We can now derive the following guidelines for network
Theorem 1:Consider the channel given in (1) and assunepde design.
that G is drawn uniformly at random frorfi;*™ and inde- 1) Choice of subspacesThe optimal input distribution

pendently from block to block. Then there exists finjtesuch uses subspaces of a single dimension equaliie{m,n} for
that forg > ¢o the optimal input distribution is non-zero onlyT > min{m,n} +n. As T reduces, the set of used subspaces
for the matrices whose rank belongs to gradually increases, by activating one by one smaller and
) N ) smaller dimensional subspaces, until, 10K n, all subspaces
A= {min[(T = n)*,m,n,T],...,min[m,n,T]}, (3) are used with equal probability. Fig. 1 pictorially depititss
Jradual inclusion of subspaces.

which we call the active set. The capacity of the channel i _ _
2) Values of m and nfor a given and fixed packet length

1 s _ T, the optimal value ofm andn equalsm = n = |T/2].
C=7 |log (Z ¢ Z)) + 17009 + Og™ " logq) (optimality is in the sense of minimum required to atch/ie\J/ae th
1 ieA maximum information transfer for thig). For fixedT andm,
=7 [L{70dqp + (T — i*)logy q + O(q 'logg)], (4) the optimal value of. equalsn = min{m, |T/2]}. For fixed
T andn, the optimal value ofn equalsn = min{n, |T/2]}.
where i* = argminge4|T/2 — i| = min{m,n,|T/2]}.
Moreover, the optimal input distribution is uniform ovel al TABLE |
INFORMATION LOSS FROM USING CODING VECTORS WHENK > m.
Lin the rest of the paper we will omit for convenience the timeeixt. T<m m<T<2om T om
2|n general, the topology of the network imposes some cangsran the C = Row C [m — LT/QHQ log, 4 0

transfer matrixG (see for example [4]). However, we believe that this is a
reasonable model, especially for large scale dynamicdgnging networks.



3) Subspace coding vs. coding vectofsnatural question Note that with an abuse of notation we have usgdx (y|-)
is, for what regimes using coding vectors [2] is far from théo denote two different functions (6) and (8). These two
optimal solution. Table | summarizes this difference. We s@roperties allow us to express the mutual information in (7)
that for |7/2] > m = n, subspace coding does not offeas stated in the following lemma
benefits as compared to the coding vectors approach. Tableemma 1:Finding the capacity of the channel in (1) is
| is calculated as follows. The achievable ral, using equivalent to maximizing
coding vectors equal®., = m(T — m)log, ¢, where each

packet includes a coding vector of lengthand” —m >0 [(X;Y) = Z Px (7)) Py x (y|m2) log, <M> 7
information symbols. Clearly?.,, is nonzero only fofl" > m, - Py (y)
and equals zero for the casés< m or n < m. Assuming yey
T > m andn > m for largeq we can write ) R ©)
over all choices ofPx (7)) = Pr((X) = 7).
C — Rey =[(m — A)Y(A+m —T)]log, q, The following lemma states that the optimal solution should

be uniform over all subspaces with the same dimension, as
expected from the symmetry of the channel.
Lemma 2:The input distribution that maximize5(X;Y)

where A = min{m,n, |[T/2]}. It can be easily shown that
for m > |T/2] we have a loss of

C — Rey = [m — |T/2]) log, q, is the one which is uniform over all subspaces having the same
. ) dimension.
while for m < |T/2] the loss is zero. Proof: Let Px(r,) be the optimal input distribution of
IV. THE CHANNEL CAPACITY the channel with transition probabilities given in (8). Fofix

. . . ._dimension0 < d < min(m, T'), and an arbitrary permutation
We will use the following notation. Let the Grassmannian

Gr(i,V) denotes the set of alldimensional subspaces of a o:{1,2,.....6(T,d)} — {1,2,....,G(T,d)}
finite-dimensional vector spadé. We useg, (7', d), or more _ ) ) )
convenientlyG(T', d), to denote the Gaussian binomial, th&vhich acts on subspaces of dimensigrdefine P (r.) as

number of distinctl-dimensional subspaces Bf . { Px(o(r,)) if dim(m,) =d

P, (m,) = oo
A. Simplified Mutual Information (7mz) Px (72) if dim(m,) # d.

In this subsection we express the mutual information in Aso defineP*(r,) = W >, P,(m,) where the summa-
simplified form. Since the rows af’ are chosen independention is over all possible permutations. Rewriting the mutua
of each other, conditioned on sending some malfix- z, the information in (9) as a function of the input distributiondan
rows of the received matriX” are independent of each othefhe transition probabilities] (Px (m.), Py|x (y|7s)), we have
among all the vectors in the row spanaafThe independence
of rows of Y let us write the conditional probability of I(P*(72), Py x (y|mz))

given X as 1
=1 <m ; Pcr(Tr:c)y PYX(y|7rI)>

(a) 1
> m ;I(Pa(ﬂw)v PY\X(?JM’z))

TrdimE) - (y) C (),
otherwise

Prxtole) = { & ©
wherez € X, y € Y, and (y) C (z) states that(y) is a
subspace ofx). ®)

The mutual information (X;Y’) betweenX andY can be = 1(Px(m2), Pyx (y|m2))

written as a function oPx (z) and Py|x (y|z) as where (a) is due to concavity of the mutual information

Py x (y|z with respect to the input distribution, ar{d) holds because
1Y) = 3 Pe(@Pyisoloos, (D)

Py (y) I(Py(72), Py x (y|m2)) = I(Px(m2), Py x (y|r.)) for all o,
TEX i - i i
2 since the permutation only permutes the terms in a summation
_ in (9).
It is clear from (6) thatPy x(ylz1) = Py x(ylzs) for all Note that P*(r,) assigns equal probabilities to all sub-
x1,z2 € X such that(z,) = (z;). Similarly the transition gpaces with dimension, and above-mentioned inequality
probabilities in (6) can be rewritten as shows that it is as good as the optimal input distribution. A
—ndim(r,) c similar argument holds for all < d < min(m,T"). Therefore,
Pyix(ylm) =14 & ) € Tz (8) i i i istributi i
| I 0 otherwise a dimensional-uniform distribution achieves the capaaitihe
_ channel. [ |
where Py x (y|mz) £ Pr(Y = y|(X) = 7). Herem, € X Lemma 2 shows that the optimal input distribution can be
where . expressed as
Yy A o
¥ e Jer(iFy). Pr((X) = m,) = =t (10)



wherer = dim(rw,) and «,, = Pr(dim({(X)) = r) and we C. Solution for Large Field Size
have ™0™ T) o, = 1.

Assuming the optimal input probability distribution of the
form (10), the probability of receiving a specific matlix= y
at the receiver can be written as

For the rest of this paper, we focus on large size fields,

q > 1. This assumption allows us to use some approximations
to simplify the conditions in (13). For example, by absogoin
log, e in \, one can rewritel;, £ I; +log, e for largeq as

min(m,T) B
Py(y) = 1 S G, dy)g 0, (1) k= -nklogyq (15)
dy=d, min(n,k)
that showsPy (y) only depends ow,, = dim((y)). Therefore, B Z (1+0@™)q (I og, (Py (y)
having Py (y) only depends onl, and replacing (10) in (9), 4y=0
we get where we have used the asymptotic expressigfisd,) =
min(m,T) gMF=h) (14 0(¢7")) and Sy, = ¢"% (1+0(¢ ")) [7].
I = _ Z ag,ndy log, q (12) Using similar approximationslog, Py (y) in (11) can be
=0 rewritten as
milm | i) logy (Py (y)) = — dyTlogy ¢ + O(g™")

min(m,T’)
Plogy | Y qm W ay,
where Sy, is the number of different: x T' matrices over dp=d,
[, that their rows span a specific subspacec [FqT with —=0(logq). (16)
dimension0 < d,, < min(n, T).

= > aa Y, Sa,G(de,dy)g " ogs (Py(y)) |
dp=0 dy=0

Using (16) one can conclude that the dominating term in the
summation in (15) is the one obtained féy = min(n, k).

As stated in the last subsection, the problem of flndlng ﬂ'ﬁnce' the remaining terms are of 0|’d§|’1 log ¢, we can write
optimal input distribution is reduced to finding the optimal

choice foray, i = 0,...,min(m,T). Note that the mutual I =[T'min(n, k) — nk]log, ¢ + O(q" ' logq)

B. The Optimal Solution: Approach

information is a concave function with respectdgs. This min(m,T)
allows us to use the Kuhn-Tucker theorem [5] to solve the — log, Z g minuRlde ) (17)
convex optimization problem. According to this theoreng th dy—mmin(n,k)

maximizing values, denoted hy; satisfy

Therefore, the Kuhn-Tucker conditions can be rewritten as
AI(X;Y)

=\ Vk: af >0,
ooy, o k min(m,T’)
(13) 2 : qf[nfmin(n,k)]dzad >
OI(X;Y) <\ Vk: ar=0 dy=min(n,k)
60% a* k !

27C+O(q71 log q) [T min(n,k)—nk] ,

min(m,T’) 4

for some constank where) " af =1.
By taking the partial derivative of the mutual informatiorivhere the inequality holds with equality for @lwith o > 0.
with respect tan, we have Let § £ min(m, T) and define thés 4 1) x (6 + 1) matrix
A with elements

AI(X;Y)
rAZ Ny ) . s
=g~ "klosag (14) Ao [ el mingn,i) < j <6, (18)
min(n,k) * 0 otherwise
Sa,G(k,dy,)q ™" log, (P —1 , ,
dz_:o 4,9( ogs (Py(y)) — log, e, We also define the column vectér with elementsb; 2

o o _ [T min(n.0)=ni for ) < § < §. Note that for convenience the
where Py (y) is given in (11). Multiplying both sides of (14) indices of matrixA and vectorb start from0. Using these

by a3, and summing ovek we get definitions, we are able to rewrite the Kuhn-Tucker condiio
min(m,T) in the matrix form as
,10g26: Z OékI];- Aa* i 2—C+O(q7110gq)b, (19)
k=0

By choosing the optimal values; = o} for 0 < k < Wwhere we use®” to denote element-wise inequality for the
min(m, T), the RHS becomes, and the mutual information vectors, andx* is the vector of the optimum probabilities of
increases ta@'. So we may write choosing subspaces of certain dimension. In the followiveg,
consider two cases for < n andd > n, and finda* for each
A=C—logye. of them, separately.



First case: 0 < n. In this case we can explicitly write the The lastd —n+1 rows of A are the same whilg, is decreasing

matrix A and vectorb as with i for 4 > n. Thus, the last — n inequalities are strict
rq g™ g~ (=1n g q and therefore,
0 qf(nil) ce qi(éil)(nil) qils(nil) O‘:erl —RR— Oé:; — 0 (21)
0 0 cee g (0=D(n=2) g (=2 . . . i
A — The remaining equations can simply be reduced to the fist
: : - : : case. Define
0 0 oo gm0 (n—d+1) qfi(;f:r)l) o g g~ (n=1n ™ ]
0o 0 .. 0 q | 0 ¢ ... g(=Dn=1)  gon(n-1)
and A 0 0 . g D(=2) mn(n-2)
b=[1 ¢ ... pr-n]" S : . : : ’
S Lo 0 0 e g~ (=1 g "
The fact that the expression inside the(-) function in
(17) is non-zero fokk = ¢, forcesa;j to be positive. Thus the L 0 0 o 0 1 -
last row of the matrix inequality in (19) should be satisfied sand ~ "
an equality. Therefore, b=[1 ¢TI ... gT=n) ",
ap =g (T=9)=C+0( "oz ) The remaining conditions in this case can be written as
AOZ* - 27C+O(q71 Iqu)f), (22)

The following lemma helps to find the behavior of the
optimal input distribution. We include the proof in [7]. which is exactly similar to (19), fod¥ = n. Therefore,

Lemma 3:Let§ < n anda™ be the optimal solution of the the optimal solution for the first case will also satisfy thes
Kuhn-Tucker conditions in (19). Them; > 0 impliesa; > 0  conditions,i.e,,

forj <i <. { qi(Tfi)2fC+(9(q’1 logq) , <i<n,

23
0 0<1 <k, (23)

Using this lemma, it is easy to verify that there exists some «a; =
0 < k < 4, where the inequalities in (19) indexed by < _ o
j < 6 hold as equality. Moreovery? = 0 for 0 < i < k. With £ = min[(T" — n)*,n]. Summarizing (21) and (23), we

Therefore, one can solve the set of equations recursivety, &an obtain the optimal solution for this regime, as

show that 0 n<i<3,
. . — (T —i) e — -1 .
of — qz(sz)2fC+O(q Ylog q) D ok <i<é, (20) a;k = ql(T i)9—C+0(q" logq) < ’L <n,
! 0 0<1i <k, 0 0<i<k,
and it only remains to determine Sincea’_, = 0, we can Wherex = min[(T" —n)*,n]. This concludes the proof.
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