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Abstract— In networks that employ network coding, two main
approaches have been proposed in the literature to allow the
receivers to recover the source information: (i) use of coding
vectors, that keep track of the linear combinations the received
packets contain, and (ii) subspace coding, that dispenses of
the need to know the linear combinations, since information
is conveyed from the choice of subspaces alone. Both these
approaches impose the strong requirement that all source packets
get potentially combined. We here present a third approach that
relaxes this assumption, and is thus not a special case from either
of the previous two. This relaxation allows to employ compressed
coding vectors to efficiently convey the coding coefficients, with-
out altering the operation of intermediate network nodes. We
develop optimal designs for such vectors.

I. I NTRODUCTION

There has been a growing consensus in the research com-
munity that network coding is a promising technique to be
applied in networking applications, such as wireless networks
and content distribution networks. Network coding has inter-
mediate network nodes perform combinations of the source
data. Practical networks being subject to random delays, syn-
chronization errors, and even packet erasures, nodes failures,
and topology changes, it is not viable to assume that the
linear combinations performed at the intermediate nodes are
deterministically known at the receivers.

Two approaches have been proposed in the literature to
address this. The first has a coding vector appended to each
packet [2]. This vector keeps track of the linear combination
of the source packets the coded packet contains. The receivers
use this information to solve a system of linear equations and
recover the original data. The second approach uses subspace
coding [4]. The information is conveyed by a subspace that the
source selects; the receivers to decode simply need to decide
which was the sent subspace. In this case the receiver needs
no information about the linear combinations that the network
nodes perform to decode. Both these approaches divide the
source packets into generations and allow combining only
among packets in the same generation. As far as we know,
these are the only two approaches currently proposed.

The first approach comes at the cost of the coding vectors
overhead. This overhead would be acceptable for large packets,
however, in wireless applications, where packets are much
shorter, it can very fast become prohibitive. Even in wired
networks, the tradeoff between a larger generation, which
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employs longer coding vectors, and a smaller generation,
which may not allow mixing of packets and reduce the network
coding benefits, is a subject of research in the community.

From an information theoretic point of view, the second
approach, subspace coding, results in higher information rates
for short packet length, but as the packet length increases,
achieves the same information rate as having the coding
vectors overhead [3]. Moreover, it is very challenging to design
subspace codes for multisource network coding, where the
information sources that insert data in the network are not
co-located, as is the case for several applications. We discuss
such examples in Section II.

In this paper we present a third approach that is not a special
case of the previous two. Our approach employs shortened or
compressed coding vectors to efficiently convey the coding
coefficients. The observation our approach leverages is that,
the classic design of coding vectors allows potentiallyall
source packets to get combined together; however, for some
networks, this is too strong a requirement (see Section II for
examples), and results in too low an information rate. In our
approach we thus propose to employ coding vectors that allow
at most m source packets to get combined. This naturally
occurs in some applications, where for example only source
packets originating from neighboring nodes get combined.
We can also artificially restrict the number of source packets
that get combined, by appending to each coded packet a few
bits to count the number of source packets it contains. Note
that, the receiver will eventually still need to solve a set of
n linear equations to retrieve the source data; our approach
only shortens the coding vectors that convey these linear
combinations.

Our design problem can now be stated as follows. Given
a generation that containsn source packets, each receiver
is going to observe packets that contain linear combinations
of at most m source packets. We want to design coding
vectors that allow us, by receiving each combined packet, to
determine which linear combination of the source packets it
contains. The classical coding vectors design would utilize
coding vectors of lengthn. In this paper we explore what,
under our assumptions, is the smallest lengthr of coding
vectors we need to employ, and how can we select them. A key
point of our design is that we require the intermediate node
operation to be oblivious to the coding vectors employed, and
in particular, to not perform compression operations.

For m much smaller thann, our approach can also be
viewed as compressing the classical coding vectors, and our
problem can be cast in a compressed sensing framework.



Moreover, in this case, solving the set ofn linear equations
at the receiver becomes more efficient, since we can take
advantage of the low density of the linear combinations to
decode with belief propagation techniques.

The paper is organized as follows. Section II introduces
our notation and reviews the existing approaches. Section III
presents our approach, and Section IV concludes the paper.

II. A PPROACHES IN THE LITERATURE AND PROBLEM

STATEMENT

Consider a dissemination protocol where the nodes in the
network perform linear network coding,i.e., linearly combine
their incoming packets. One or multiple sources, not necessar-
ily collocated, produce independent information packets,that
we will call source packets. The source packets get divided
into sets called generations. Source packets belonging in the
same generation are allowed to get combined together, as they
traverse the network. Assume that each generation containsn
source packets{x1, . . . , xn}. Each such packet consists ofℓ
symbols over some finite fieldFq.

The classical coding vector approach appends to each source
packetxi a coding vectorpC

i . Initially, the sources employ
pC

i = ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ F
n
q , i.e., ei has zeros

everywhere and1 is at theith position. Thus the packets sent
by the sources are of the form

[ei | xi], (1)

where we assumed without loss of generality that the coding
vector is placed at the beginning of the packet. Intermediate
network nodes perform linear combinations of their received
packets. In general a packet propagating in the network will
have the form

p , [pC | pI ], (2)

where pI ∈ F
ℓ
q is a linear combination of source packets

(we call this sometimes information vector), andpC ∈ F
n
q

is the coding vector that contains the linear coefficients for
the combined source packets.

Each receiver that receivesn packets with linearly in-
dependent coding vectors can recover the original source
information. To do so, the receiver solves the linear equations
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where theith row of matrix A is the coding vector corre-
sponding to received packetpi. Since the receiver collectsn
linearly independent coding vectors, the matrixA is full rank,
and thus the original packets can be recovered.

This approach comes at the overhead of the coding vectors,
that can fast become impractical, as we following illustrate.

Example 1:Consider a sensor network consisting of100
nodes, each sending a message to a sink. To implement

TABLE I

CODING FOR TWO SOURCES.

C2/C1 π1 π2 π3

π4 π1 + π4 π2 + π4 π3 + π4

π5 π1 + π5 π2 + π5 π3 + π5

π6 π1 + π6 π2 + π6 π3 + π6

network coding using coding vectors over a field of sizeq = 24

we would need to use50 Bytes of each packet simply for the
coding vectors. In the TinyOs operating system [18], which
is perhaps the most popular for sensor nodes, a typical frame
length allows approx.30 bytes for data transmissions. Thus
clearly this is not a viable approach. �

Subspace coding dispenses of the need to convey coding
vectors. In this scheme, neither the receiver nor the sources
know the mixing matricesA in (3), i.e., the specific set of
linear operations. Sources can only communicate information
using subspaces which are unaffected by the linear operations
performed on them. Hence, each source uses a subspace
codebook,i.e., maps each message to a set of vectors that
span a different subspace. This approach is optimal in terms
of achievable information rates when the length of the packets
is small but as the length increases it results in the same
information rate as the coding vectors approach [3]. Moreover,
as the following example illustrates, code design is not trivial
when multiple sources insert data in the network.

Example 2:We here argue that designing subspace codes
for the case where the sources are not collocated is challeng-
ing. Consider the case wheren sources employ codebooksMi

consisting of subspaces of the vector spaceF
ℓ
q, i.e.,

Ci = {π
(i)
j : π

(i)
j ⊆ F

ℓ
q, 1 ≤ j ≤ |Mi|}, i = 1, . . . , n.

To transmit information to the sink, sourcei maps a measured
value to one such subspaceπ and inserts in the network
dim(π) vectors that spanπ. In relaying information towards
the sink, the sensor linearly combines all packets it has
received (including that generated by itself) and transmits
the combined packet to the next relays towards to the sink.
As a result, the sink will observe vectors from the union of
subspaces inserted by all the sources. In particular, if source
i inserts the subspaceπi, the sink will observe vectors from
the subspaceπ1 + π2 + · · ·+ πn. Using the knowledge of the
codebooks{Ci}, it needs to decode the source data.

To be able to correctly decode at the receiver, we need to
ensure that every combination of source data results in adis-
tinct union subspace. We call this the identifiability property.
Assume for simplicity we have two source nodes,S1 using
the codebookC1 = {π1, π2, π3}, while S2 the codebook
C2 = {π4, π5, π6}. Table I summarizes all outcomes. For
this code to be identifiable, we want all (or some) entries
in Table I to correspond to distinct subspaces. For example,
π1 + π4 should be a distinct subspace fromπ2 + π5.

This problem is hard to solve even for the case of two
sources, and a very small codebook (in our example each node
transmits only 3 values). Designing such a code for multiple
sources is clearly a challenging task. �



In both the previous approaches, a common underlying
assumption is that, all source packets may get combined in
the network. Given that clearly this can be too strong a
requirement for many practical networks, we here relax it, and
require that each coded packets contains a linear combination
of at mostm out the n source packets. This allows us to
use coding vectors whose length grows sub-linearly withn,
resulting in a more efficient network communication. In the
following we in turn discuss, how can we design such coding
vectors, and how do we utilize them in decoding,i.e., how
we can retrieve the linear coefficients of the combined source
packets. We also discuss what is the smallest required length,
and what are the benefits we can expect to get.

III. C OMPRESSING THE CODING VECTORS

A. Code design

Consider a network performing linear network coding,
where each coded packet contains the linear combination of
at mostm source packets. Form much smaller thann, the
classical coding vectors become sparse. We can thus compress
them, by replacing them with shorter vectors, that still allow
the receivers to extract the original coding vectors and decode
the sources messages. Our construction utilizes properties of
algebraic error correcting codes, and proceeds as follows.

Select a linear codeC = [n, k, d]q whered = min(2m +
1, n+1) with k as large as possible. Consider ther×n parity
check matrixHC wherer , n − k. As coding vector, assign
to source packetxi the ith column of the matrixHC , which
we will denote ashi. That is,

hi = ei · H
T
C . (4)

We call these vectorscompressed coding vectors. Thus the
sources insert to the network the packets

[hi | xi]. (5)

Intermediate nodes linearly combine their received packets.
The coded packets propagating in the network will now have
the form

p , [p̂C | pI ], (6)

where p̂C ∈ F
r
q denotes the compressed coding vector ap-

pended to packetp. This is related to the classical coding
vectorpC that describes the linear transform from the source
packets as

p̂C = pC ·HT
C . (7)

If m packets are allowed to be combined, withm much
smaller than the lengthn of the coding vectorpC , this can be
viewed as compressing the sparse vectorpC , and hence the
compressed coding vector terminology.

The reason this construction enables receivers to decode
follows from a well known property the columns of matrix
HC satisfy. If a codeC has minimum distanced, then any set
of d−1 columns of the matrixHC are linearly independent [5].
Moreover, given that at mostm source packets get combined,
wt(pC) ≤ m where wt(·) denotes the Hamming weight of

a vector, the number of non-zero elements. The following
lemma states that we will be able to recover the original coding
vectors from the compressed ones.

Lemma 1:There is an injective map betweenpC ,
wt(pC) ≤ m, andp̂C related by (7).

Proof: For two pC
1 6= pC

2 where wt(pC
1 ) ≤ m and

wt(pC
2 ) ≤ m we have wt(pC

2 − pC
1 ) ≤ min(2m, n). But

the minimum distance ofHC is min(2m + 1, n + 1) so
(pC

2 − pC
1 ) ·HT

C
6= 0 which leads top̂C

1 6= p̂C
2 .

Example 3:Suppose the number of packets in every gen-
eration isn = 15 and each packet in the network contains
linear combinations of at mostm = 2 packets which leads to
d = 2m+1 = 5. Let alsoq = 24. The codeC can be chosen to
be the Reed-Solomon code with parametersC = [15, 11, 5]24.
The parity check matrix ofC can be written as follows

HC =







1 α α2 · · · α15−1

1 α2 α4 · · · α2(15−1)

1 α3 α6 · · · α3(15−1)

1 α4 α8 · · · α4(15−1)







,

whereα is a primitive element ofF24 . Each column ofHC

can be assigned to one ofn = 15 source packets.

B. Decoding

Upon receiving a packetp with compressed coding vector
p̂C , the receiver needs to recover the original coding vector
to construct the system of linear equation in (3).

In our construction, the problem of finding the original cod-
ing vectorpC from the compressed coding vectorp̂C reduces
to a decoding problem. In the coding theory terminology,
we need to find the error vector having access only to the
syndrome of a received vector. More formally, we may write

find pC

subject to wt(pC) ≤ m,

pC ·HT
C

= p̂C .
(8)

This problem is in general NP-complete [6]. However, coding
theory identifies instances that accept efficient encoding and
decoding algorithms, and we leverage these constructions.

Note that, it is sufficient to find what are the non-zero
positions ofpC . If we know the non-zero positions, using
the knowledge of the matrixHC , we can uniquely recover the
linear coefficients in the original coding vectors. The following
lemma from coding theory formalizes this observation [8].

Lemma 2:Let C be a linear code inFn
q with parity check

matrix HC . Assume a codewordx is sent and a wordy is
received, with error vectore, wherey = x + e. Suppose we
know a setJ with at mostd(C)−1 elements that contains the
set of error positions;i.e., non-zero elements ofe. Then the
error vectore is the unique solution of the following linear
equations:̂eHT = yH

T and êj = 0 for all j /∈ J.
The above lemma shows that we can reduce the problem of

recovering the original coding vector to the problem of finding
the non-zero positions of the original coding vector.

One approach to achieve this is through exhaustive search.
For small values form andn this in a fast computer can be



TABLE II

T IME FOR EXHAUSTIVE SEARCH IN SECONDS. EXPERIMENTS ARE RUN ON

A SINGLE CORE OF ANINTEL CENTRINO DUO2, AT 3 GHZ.

n/m 2 3 4

15 0.00018 0.0020 0.017
31 0.00097 0.024 0.48
63 0.0047 0.24 10.4

feasible, as Table II illustrates. However, there are
(

n

m

)
possible

m-sets of non-zero positions to consider. This number grows
exponentially inn when m

n
converges to a non-zero number.

A more practical approach is to use some known algebraic
codes forC like BCH code, Reed-Solomon code [14], Goppa
code [13], algebraic geometry codes [15], etc., to recover
the original coding vectors efficiently. For all of the codes
mentioned above there exists a version of the Berlekamp-
Massey algorithm [9], [10] which allows the receivers to find
the location of non-zero elements of original coding vectors
as well as their values, using only the syndrome.

The Berlekamp-Massey algorithm consists of three stages
that can be briefly summarized as follows. The first stage is
the calculation of syndrome which in our approach we have
it for free, since the received compressed coding vectors are
equivalent to syndromes of original coding vectors. The second
stage is to find the error locator polynomial which is defined
as following

λ(z) ,

τ∏

r=1

(1 − αir z) =

τ∑

r=0

λiz
r,

wherei1, . . . , iτ are the non-zero elements ofpC , τ ≤ t, andα
is a primitiventh root of unity. Finally, receivers find the roots
of λ(z) to find the location of non-zero components ofpC and
using Lemma 2 can retrieve the original coding vectors.

C. Benefits

Using the compressed coding vectors method, the length of
coding vectors reduces fromn to r = n − k. The following
lemma shows the optimality of our construction in terms ofr.

Lemma 3:The proposed construction leads to the shortest
length possible for compressed coding vectors.

Proof: The problem of finding the shortest representation
for a sparse vector of lengthn and sparsity at mostm overFq

is equivalent to the problem of designing the highest rate code
with lengthn and minimum distance2m+1 overFq. Indeed,
if one could find a smaller representation for the compresses
coding vectors that still lets recovering the original coding
vectors,i.e., problem 8 is solvable, this implies that there exist
a higher rate code with the specified parameters.

We now examine what is the required sizer for different
cases. From the Singleton bound for codeC we have

k ≤ n − d + 1 = n − min(2m, n),

so for n
2 ≤ m ≤ n we havek = 0 which implies that we can

select w.l.o.g. the full rankn × n parity matrixHC to be the
identity matrix. In this case, we recover the usual network
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Fig. 1. Bounds on the length of the compressed coding vectors, r. Upper
figure: r as a function of the number of packets in a generationn, when
m = 2 and m = 20 sources get combined,q = 2. Lower figure:r as a
function of n when m = 10 sources get combined, for two values of field
sizeq = 2 andq = 128.

coding with coding vectors{ei} appended to the sources
packets, and there is no benefit from our approach.

From the Gilbert-Varshamov bound [7] we have an upper
bound for the length of compressed coding vectorsr that for
the casem < n

4 can be simplified to

r ≤ nHq

(
d − 1

n

)

= nHq

(
2m

n

)

, (9)

whereHq(δ) = δ logq(q − 1)− δ logq δ − (1 − δ) logq(1 − δ)
is theq-ary entropy function. Also, the Sphere packing bound
leads to a lower bound on the length of compressed coding
vectors where form < n

2 we can simplify it to obtain

r ≥ nHq

(
d − 1

2n

)

−
1

2
logq

(

4(d − 1)

(

1 −
d − 1

2n

))

= nHq

(m

n

)

−
1

2
logq

(

8m
(

1 −
m

n

))

. (10)

From (9) and (10), for fixed values ofm, and as the number
of source packets grows, we have

m logq n + O(1) ≤ r ≤ 2m logq n + O(1),



So using the proposed method, we can reduce the growth of
coding vectors fromO(n) to O(m log n).

Example 4:Using a table of the best codes known (from
[5] and [12]), we can see for example that, there exist binary
linear codes of lengthn = 127 with redundancyr = 35 and
minimum distanced = 2m + 1 = 11, which is in fact a
shortened version of[128, 93, 11]2 Goppa code [13]. Thus in
a network with127 source packets in each generation if at
most m = 5 source vectors get combined, we need to use
coding vectors of lengthr = 35 instead ofn = 127.
In the previous example, it is assumed that the network nodes
perform binary network coding;i.e., nodes only XOR the
packets. However, if the field size is increased, a shorter
compressed coding vectors can be used as it is shown in the
Example 5. In fact the code used in Example 4 is not a MDS1

code while the Reed-Solomon code in Example 5 is MDS.
Example 5: It is known that the Reed-Solomon code [14]

is a linear code[n, k, d]q wheren = q− 1 andk + d− 1 = n.
To compare the length of compressed coding vectors resulting
from the Reed-Solomon code as in Example 4, consider a
field of sizeq = 27, which leads ton = 127. Also setd =
2m + 1 = 11 for the redundancy; the length of compressed
coding vectors equalsr = n − k = d − 1 = 10 where the
ratio of the compressed coding vector length to the original
coding vector length is much lower than that of Example 4.
Compared to the case of classical coding vectors, the coding
vector headers decrease from112 Bytes to only9 Bytes.

D. Effect on Rate

A natural question to ask is, if we restrict the number of
combined packets, how does this affect the observed multicas-
ting rate. This clearly depends not only on the value ofm, but
also on the network topology and on the subsets ofm packets
that get combined. For example, for some networks, no coding
is required to achieve the min-cut rate for all receivers. Itis
also easy to come up with specifically constructed examples,
where we cannot achieve the min-cut rate unless all source
packets get combined.

However, as we argued in Section II, in many situations,
such as the case of multisource wireless networks, it is not
practical to allow all possible linear combinations to occur.
Additionally, in preliminary experiments we are performing,
we see that the number of actually combined packets depends
on the distance from the receiver and the number of sources
in the vicinity, and can be much smaller than the total number
of sources in the network, as sources that are topologically
separated may very rarely have their packets combined.

One possible way to abstract this problem is the following.
Consider again the linear equations that the receiver needs
to solve in (3) and assume that the nonzero elements in
the n × n matrix A are chosen uniformly at random with
probability m/n. For each nonzero position, a uniformly at
random nonzero coefficient from the fieldFq is then selected.
This will result in a sparse matrixA, where each row will

1Maximum distance separable.

have on the averagem nonzero elements fromFq per row
(coding vector). From [16], we have the following lemma.

Lemma 4:For everyc ≥ 0 there exist a constantac such
that for the random matrixA ∈ F

n×n
q , n > ec, with m =

log n − c we have

Pr[Rank(A) < n] ≤
ac

q
.

Proof: See Corollary 2.4 [16].
Work in [17] extended the above lemma and showed that for
m > log n the probability that the matrixA is not full rank
approaches zero polynomially fast withn. The above argument
shows thatm should be at least orderO(log n) to let receivers
end up with full rank matrixA with high probability.

IV. CONCLUSIONS

In this paper we have presented a novel approach for
practical network coding, that uses shortened coding vectors
as compared to the classical approach. We showed that we can
reduce the length of the coding vectors fromn to O(m log n)
where n is the number of source packets injected in the
network, if each coded packet contains the combination of
at mostm source packets.
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