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Abstract— In networks that employ network coding, two main employs longer coding vectors, and a smaller generation,
approaches have been proposed in the literature to allow the which may not allow mixing of packets and reduce the network
receivers to recover the source information: (i) use of codig coding benefits, is a subject of research in the community.

vectors, that keep track of the linear combinations the reciwed = inf tion th fi it of Vi th d
packets contain, and (ii) subspace coding, that dispensed o rom an information theoretic point or view, the secon

the need to know the linear combinations, since information approach, subspace coding, results in higher informatiesr
is conveyed from the choice of subspaces alone. Both thesdor short packet length, but as the packet length increases,
approaches impose the strong requirement that all source mkets  achieves the same information rate as having the coding
get potentially combined. We here present a third approachhat yactors overhead [3]. Moreover, it is very challenging tsida
relaxes this assumption, and is thus not a special case fronitleer . .
of the previous two. This relaxation allows to employ compresed §ubspac_e codes for multl_source netv_vork coding, where the
coding vectors to efficiently convey the coding coefficientsvitn-  information sources that insert data in the network are not
out altering the operation of intermediate network nodes. W co-located, as is the case for several applications. Weusksc
develop optimal designs for such vectors. such examples in Section II.
In this paper we present a third approach that is not a special
case of the previous two. Our approach employs shortened or
There has been a growing consensus in the research caompressed coding vectors to efficiently convey the coding
munity that network coding is a promising technique to beoefficients. The observation our approach leverages is tha
applied in networking applications, such as wireless neta/o the classic design of coding vectors allows potentially
and content distribution networks. Network coding hasrintesource packets to get combined together; however, for some
mediate network nodes perform combinations of the sournetworks, this is too strong a requirement (see Sectionrll fo
data. Practical networks being subject to random delays, sgxamples), and results in too low an information rate. In our
chronization errors, and even packet erasures, nodesesiluapproach we thus propose to employ coding vectors that allow
and topology changes, it is not viable to assume that the mostm source packets to get combined. This naturally
linear combinations performed at the intermediate nodes arccurs in some applications, where for example only source
deterministically known at the receivers. packets originating from neighboring nodes get combined.
Two approaches have been proposed in the literature We can also artificially restrict the number of source pagket
address this. The first has a coding vector appended to e#wdt get combined, by appending to each coded packet a few
packet [2]. This vector keeps track of the linear combimaticdbits to count the number of source packets it contains. Note
of the source packets the coded packet contains. The regeitbhat, the receiver will eventually still need to solve a sét o
use this information to solve a system of linear equatiorts an linear equations to retrieve the source data; our approach
recover the original data. The second approach uses subspady shortens the coding vectors that convey these linear
coding [4]. The information is conveyed by a subspace ttat thombinations.
source selects; the receivers to decode simply need toalecidOur design problem can now be stated as follows. Given
which was the sent subspace. In this case the receiver negdgeneration that contains source packets, each receiver
no information about the linear combinations that the nétwois going to observe packets that contain linear combination
nodes perform to decode. Both these approaches divide ttieat mostm source packets. We want to design coding
source packets into generations and allow combining onkgctors that allow us, by receiving each combined packet, to
among packets in the same generation. As far as we knalgtermine which linear combination of the source packets it
these are the only two approaches currently proposed.  contains. The classical coding vectors design would etiliz
The first approach comes at the cost of the coding vectmsding vectors of lengt. In this paper we explore what,
overhead. This overhead would be acceptable for large packender our assumptions, is the smallest lengtlof coding
however, in wireless applications, where packets are muetctors we need to employ, and how can we select them. A key
shorter, it can very fast become prohibitive. Even in wiregdoint of our design is that we require the intermediate node
networks, the tradeoff between a larger generation, whioperation to be oblivious to the coding vectors employed, an
in particular, to not perform compression operations.

This work was supported by the Swiss National Science Fdigrdander For m much smaller tham. our approach can also be
award PP002-110483, by the EU projects NetReFound (FP®33%13) and '

N-CRAVE (FP7 ICT-2007-215252) and by the Hasler Foundagwoject ViEWed as compressing the classical coding vectors, and our
number 2072. problem can be cast in a compressed sensing framework.
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Moreover, in this case, solving the set oflinear equations
CODING FOR TWO SOURCES

at the receiver becomes more efficient, since we can take
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The paper is organized as follows. Section Il introduces o 1+ 76 | T2 + 76 | w3 + T

our notation and reviews the existing approaches. Section |

presents our approach, and Section IV concludes the paper.
network coding using coding vectors over a field of sjize 2*

Il. APPROACHES IN THE LITERATURE AND PROBLEM we would need to usB0 Bytes of each packet simply for the
STATEMENT coding vectors. In the TinyOs operating system [18], which

Consider a dissemination protocol where the nodes in tifePerhaps the most popular for sensor nodes, a typical frame
network perform linear network codinge., linearly combine length allows approx30 bytes for data transmissions. Thus
their incoming packets. One or multiple sources, not negessclearly this is not a viable approach. L
ily collocated, produce independent information packéitat ~ Subspace coding dispenses of the need to convey coding
we will call source packets. The source packets get divid¥gctors. In this scheme, neither the receiver nor the seurce
into sets called generations. Source packets belongingein know the mixing matricesA in (3), i.e., the specific set of
same generation are allowed to get combined together, ps thgear operations. Sources can only communicate infoonati
traverse the network. Assume that each generation containdsing subspaces which are unaffected by the linear opesatio
source packet§x:, ..., ,}. Each such packet consists bf Performed on them. Hence, each source uses a subspace
symbols over some finite field,. codebook,i.e., maps each message to a set of vectors that

The classical coding vectorapproach appends to each soufiiean a different subspace. This approach is optimal in terms
packetccl a codlng vectorpC. Initially, the sources employ of achievable information rates when the length of the picke
p¢ = e = (0,...,0,1,0,...,0) € F?, i.e, e; has zeros is small but as the length increases it results in the same

everywhere and is at theith position. Thus the packets sentnformation rate as the coding vectors approach [3]. Moeeov

by the sources are of the form as the following example illustrates, code design is netdti
when multiple sources insert data in the network.
lei | ], Example 2:We here argue that designing subspace codes

where we assumed without loss of generality that the codi
vector is placed at the beginning of the packet. Intermedia
network nodes perform linear combinations of their recgive
packets. In general a packet propagating in the network will Ci = {w(l : J(_z) c Fﬁ, 1<j<|Mil}, i=1,...,n.
have the form

Consider the case whemesources employ codeboolkd ;

ggthe case where the sources are not collocated is challeng
consisting of subspaces of the vector spﬁém e,

A 15C | ol To transmit information to the sink, souréenaps a measured
p=[p" | P, )
value to one such subspaee and inserts in the network
where p’ € F, is a linear combination of source packetslim(r) vectors that spam. In relaying information towards
(we call this sometimes information vector), apf € F? the sink, the sensor linearly combines all packets it has
is the coding vector that contains the linear coefﬂments feeceived (including that generated by itself) and transmit
the combined source packets. the combined packet to the next relays towards to the sink.
Each receiver that receives packets with linearly in- As a result, the sink will observe vectors from the union of
dependent coding vectors can recover the original sourggbspaces inserted by all the sources. In particular, ifcsou
information. To do so, the receiver solves the linear equati ; inserts the subspacg, the sink will observe vectors from
T the subspace; + m + - - - + m,. Using the knowledge of the
p} i fiz ot G o codebooEs{Ci}, it needs to decode 'the source dat%;l.
V) a21 a2 - a2n ) .
_ . ' ' _ _ . (3 To be able to correctly decode at the receiver, we need to
: : : . : : ensure that every combination of source data resultsdisa
p! Gpl Gp2 -+ Gpp Ty tinct union subspace. We call this the identifiability property.
Assume for simplicity we have two source nodés, using
the codeboolkC; = {m, m, w3}, while Sy the codebook
where theith row of matrix A is the coding vector corre- Co = {m4, 75, me}. Table | summarizes all outcomes. For
sponding to received packgt. Since the receiver collects this code to be identifiable, we want all (or some) entries
linearly independent coding vectors, the matfixs full rank, in Table | to correspond to distinct subspaces. For example,
and thus the original packets can be recovered. m + w4 should be a distinct subspace fram + 5.
This approach comes at the overhead of the coding vectorsThis problem is hard to solve even for the case of two
that can fast become impractical, as we following illugtrat sources, and a very small codebook (in our example each node
Example 1:Consider a sensor network consisting 8f0 transmits only 3 values). Designing such a code for multiple
nodes, each sending a message to a sink. To implemsotirces is clearly a challenging task. |
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In both the previous approaches, a common underlyiagvector, the number of non-zero elements. The following
assumption is that, all source packets may get combinedlémma states that we will be able to recover the originalrgdi
the network. Given that clearly this can be too strong \eectors from the compressed ones.
requirement for many practical networks, we here relaxitf a Lemma 1:There is an injective map betweep®,
require that each coded packets contains a linear combimativt(p®) < m, andp® related by (7).
of at mostm out the n source packets. This allows us to  Proof: For two p{ # p§ where w{p{) < m and
use coding vectors whose length grows sub-linearly with wt(p§) < m we have wtp§ — p{) < min(2m,n). But
resulting in a more efficient network communication. In théhe minimum distance o is min(2m + 1,n + 1) so
following we in turn discuss, how can we design such codin@$ — p$') - HE # 0 which leads top$ # pS . ]
vectors, and how do we utilize them in decoding,, how Example 3:Suppose the number of packets in every gen-
we can retrieve the linear coefficients of the combined soureration isn = 15 and each packet in the network contains
packets. We also discuss what is the smallest requiredHendinear combinations of at most = 2 packets which leads to
and what are the benefits we can expect to get. d =2m+1 = 5. Let alsog = 2*. The code’ can be chosen to

be the Reed-Solomon code with parametees [15,11, 5]54.
Ill. COMPRESSING THE CODING VECTORS The parity check matrix of can be written as follows

A. Code design

1 a a2 a15_1

Consider a network performing linear network coding, 1 a2 ot ... o205-1)
where each coded packet contains the linear combination of He = 1 a3 of Q3015-1) |

at mostm source packets. Fan much smaller tham, the 1 ot of A(15-1)

classical coding vectors become sparse. We can thus cosnpres

them, by replacing them with shorter vectors, that stilball Wherea is a primitive element off;.. Each column oftic
the receivers to extract the original coding vectors anddec can be assigned to one of= 15 source packets.

the sources messages. Our construction utilizes propeatie

algebraic error correcting codes, and proceeds as follows. o ) )
Upon receiving a packet with compressed coding vector

Select a linear cod€ = [n,k,d], whered = min(2m + : >C _
1,n+ 1) with & as large as possible. Consider then parity P the receiver needs to recover the original coding vector

check matrixHe wherer £ n — k. As coding vector, assign {0 construct the system of linear equation in (3).

B. Decoding

to source packet; the ith column of the matrixtLe, which In our construction, the problem of finding the original cod-
we will denote ash,. That is, ing vectorp® from the compressed coding veci®f reduces
to a decoding problem. In the coding theory terminology,
h; =e;-HE. (4) we need to find the error vector having access only to the

. syndrome of a received vector. More formally, we may write
We call these vectorsompressed coding vector§hus the y y y

sources insert to the network the packets find p©
subject to  wtp®) < m, 8)
hi| x;]. 5 .

Intermediate nodes linearly combine their received packeinjs problem is in general NP-complete [6]. However, coding

The coded packets propagating in the network will now haygeory identifies instances that accept efficient encodir a

the form decoding algorithms, and we leverage these constructions.
p=[p° | p'], (6) Note that, it is sufficient to find what are the non-zero

ositions of p©. If we know the non-zero positions, using

where p© ¢ I, denotes the compressed coding vector a X )
pended to packep. This is related to the classical coding"® knowledge of the matriklc, we can uniquely recover the

vectorp® that describes the linear transform from the sourdiear coefficients in the original coding vectors. Thedoling
packets as lemma from coding theory formalizes this observation [8].

° = pC. HZ. @) Le_mma 2:Let C be a linear cod_e iy with parity che_ck
matrix He. Assume a codeworad is sent and a wordy is

If m packets are allowed to be combined, with much received, with error vectoe, wherey = = + e. Suppose we

smaller than the length of the coding vectop®, this can be know a set/ with at mostd(C) — 1 elements that contains the

viewed as compressing the sparse vegitr and hence the set of error positionsi.e., non-zero elements af. Then the

compressed coding vector terminology. error vectore is the unique solution of the following linear
The reason this construction enables receivers to decadpiationséH” = yH” andé; = 0 for all j ¢ J.

follows from a well known property the columns of matrix The above lemma shows that we can reduce the problem of

H, satisfy. If a code&C has minimum distancé, then any set recovering the original coding vector to the problem of firgdi

of d—1 columns of the matriH, are linearly independent [5]. the non-zero positions of the original coding vector.

Moreover, given that at most source packets get combined, One approach to achieve this is through exhaustive search.

wt(p®) < m where wt-) denotes the Hamming weight ofFor small values forn andn this in a fast computer can be



TABLE I

TIME FOR EXHAUSTIVE SEARCH IN SECONDSEXPERIMENTS ARE RUN ON 250 /
Usual coding vectors
A SINGLE CORE OF ANINTEL CENTRINODuUO2, AT 3 GHz. - - - Compressed coding vectors: Lower bound
200 | == Compressed coding vectors: Upper bound
n/m 2 3 4

15 0.00018 | 0.0020 | 0.017
31 0.00097 | 0.024 | 0.48
63 0.0047 0.24 10.4

feasible, as Table Il illustrates. However, there @fné possible
m-sets of non-zero positions to consider. This number grows
exponentially inn when 2 converges to a non-zero number.

A more practical approach is to use some known algebraic

Length of coding vectors.

codes forC like BCH code, Reed-Solomon code [14], Goppa 50 100 150 200 250
) Total number of packets in a generation, n.
code [13], algebraic geometry codes [15], etc., to recover
the original coding vectors efficiently. For all of the codes 250(
mentioned above there exists a version of the Berlekamp- Usual coding vectors /
Massey algorithm [9], [10] which allows the receivers to find 200l | o T et poun
ompressed coding vectors: Upper bound

the location of non-zero elements of original coding vestor
as well as their values, using only the syndrome.

The Berlekamp-Massey algorithm consists of three stages
that can be briefly summarized as follows. The first stage is
the calculation of syndrome which in our approach we have
it for free, since the received compressed coding vectas ar

1501

100

Length of coding vectors.

equivalent to syndromes of original coding vectors. Th@grdc 50¢
stage is to find the error locator polynomial which is defined
as following ob— : ‘ : ‘
50 100 150 200 250
T T Total number of packets in a generation, n.
ANz) & H(l —a'rz) = Zx\izr,
r=1 r=0

Fig. 1. Bounds on the length of the compressed coding vectorspper

. . figure: » as a function of the number of packets in a generatignvhen
whereiy, ..., i, are the non-zero elementspff , 7 < ¢, anda m = 2 andm = 20 sources get combined;, = 2. Lower figure:r as a

is a primitiventh root of unity. Finally, receivers find the rootsfunction of n whenm = 10 sources get combined, for two values of field
of \(2) to find the location of non-zero componentgpéf and  sizeq =2 andg = 12s.
using Lemma 2 can retrieve the original coding vectors.

C. Benefits coding with coding vectore;} appended to the sources

Using the compressed coding vectors method, the lengthRCKets and there is no benefit from our approach.
coding vectors reduces fromto r = n — k. The following  From the Gilbert-Varshamov bound [7] we have an upper

lemma shows the optimality of our construction in terms-of 2ound for the length of compressed coding vectotbat for

Lemma 3: The proposed construction leads to the shorte&fe €asemn < g can be simplified to

length possible for compressed coding vectors. d—1 om
Proof: The problem of finding the shortest representation r <nH, <—> =nH, <—) , 9)

for a sparse vector of length and sparsity at most. overF, " "
is equivalent to the problem of designing the highest radecowherqu((;) = dlog,(q— 1) — dlog, 6 — (1 — &) log, (1 — &)
with lengthn and minimum distancem + 1 overF,. Indeed, s theg-ary entropy function. Also, the Sphere packing bound
if one could find a smaller representation for the compressegads to a lower bound on the length of compressed coding
coding vectors that still lets recovering the original c@fli vectors where forn < 2 we can simplify it to obtain
vectors,i.e. problem 8 is solvable, this implies that there exist
a higher rate code with the specified parameters. [ d—1 1 d—1

We now examine what is the required sizéor different | = nH, (W) ~ 3108 (4(d - (1 a W))

cases. From the Singleton bound for caieve have m 1 m
=nH, (z) ~3 log, (Sm (1 — —)) . (20)

k< n—d+1= n—min(2m,n),
From (9) and (10), for fixed values ofi, and as the number
SO for% <m<nwe havek = 0 which ImpIIeS that we can of source packets grows, we have

select w.l.o.g. the full rank x n parity matrixHe to be the
identity matrix. In this case, we recover the usual network mlog,n+ O(1) <r < 2mlog,n+ O(1),



So using the proposed method, we can reduce the growthhafve on the average: nonzero elements fronf, per row

coding vectors fronO(n) to O(mlogn). (coding vector). From [16], we have the following lemma.
Example 4:Using a table of the best codes known (from Lemma 4:For everyc > 0 there exist a constant. such

[5] and [12]), we can see for example that, there exist binatlyat for the random matrixd € Fp*", n > e with m =

linear codes of length = 127 with redundancy- = 35 and logn — ¢ we have

minimum distanced = 2m + 1 = 11, which is in fact a PriR A < Qe

shortened version dfi 28,93, 11], Goppa code [13]. Thus in r[RankA) <n] < q’

a network with127 source packets in each generation if at  Proof: See Corollary 2.4 [16]. ]

mostm = 5 source vectors get combined, we need to udtlork in [17] extended the above lemma and showed that for

Coding vectors of |engt|ﬂ = 35 instead ofn = 127. m > IOgTL the probablllty that the matrid is not full rank

In the previous example, it is assumed that the network nodd#Proaches zero polynomially fast with The above argument

perform binary network Codingt_e_’ nodes On'y XOR the shows thatn should be at least Ordé?(log n) to let receivers

packets. However, if the field size is increased, a shor@id up with full rank matrixA with high probability.

compressed coding vectors can be used as it is shown in the IV. CONCLUSIONS

Example 5. In fact the code used in Example 4 is not a MDS

code while the Reed-Solomon code in Example 5 is MDS. In this paper we have presented a novel approach for

Example 5:1t is known that the Reed-Solomon code [14 ractical network codlng,_ that uses shortened coding vecto
. . s compared to the classical approach. We showed that we can
is a linear codén, k, d], wheren = ¢—1 andk+d—1 = n. .
) reduce the length of the coding vectors franto O(mlogn)

To compare the length of compressed coding vectors regultin . L .

; "~ Where n is the number of source packets injected in the
from the Reed-Solomon code as in Example 4, ConS'derneétwork if each coded packet contains the combination of
field of sizeq = 27, which leads ton = 127. Also setd = ' P

2m + 1 = 11 for the redundancy; the length of compresse%‘it mostim source packets.
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