
On Randomized Network Coding
Properties and their Application

Mahdi Jafari Siavoshani

advisor:

Prof. Christina Fragouli

External expert:

Prof. Frank Kschischang

Master Thesis
Communication and Computer Science Department

Ecole Polytechnique Fédérale de Lausanne

October 1, 2007

2

Acknowledgement

This project would not have been possible without the support of many
people. I would be grateful to my advisor Prof. Christina Fragouli for her
constant support and encouragement at the start of the project, during the
work and at the end. Also thanks to my unofficial co-advisor Prof. Suhas
Diggavi for his guidance and support.

Here I would like to thank Soheil Mohajer for the great discussion we
had during this work. I should also thank many friends including:
Amin Karbasi: who always forces me to enjoy the life!,
Shirin Saeedi: who always shows me that there exists another way of think-
ing!,
Ghazale Hosseinabadi: who is a good neighbor and friend,
Pedram Pedarsani: for his free ride by his Ford!,
Hamid Khatibi and Maryam Javanmardi: for their so much help and sup-
port,
Ali Ajdari and Maryam Zaheri: for their friendship,
Hamed Alavi: who is really calm and enjoy the life.

Finally, I owe my family (my parents and my brother) a great debt of
gratitude for their support.

3

4

Contents

1 Introduction 7
1.1 Related Work . 8

2 Modeling 11
2.1 Network Operation . 11
2.2 Randomized Network Coding Model 13
2.3 Definitions and Notation . 15
2.4 Oblivious Model for Randomized Network Coding 16
2.5 Algebraic Model for Synchronous Networks 17

3 Some Notes on Vector Spaces over a Finite Field Fn
q 21

3.1 Sampling Subspaces over Fn
q 21

3.2 Rate of Innovative Packets . 25

4 Topology Inference 29
4.1 Tree Topologies . 29

4.1.1 Common Min-Cut . 29
4.1.2 Directed v.s. Undirected Network 31
4.1.3 Different Min-Cuts . 32

4.2 General Topologies . 32
4.3 Conclusion and Discussion . 35

5 On Locating Byzantine Attackers 37
5.1 Problem Formulation . 38
5.2 Basic Properties . 38
5.3 The Case of a Single Adversary 40

5.3.1 Identification using only Topological Information 40
5.3.2 Identification using Information from all Network Nodes . 42

5.4 The Case of Multiple Adversaries 45
5.4.1 Identification using Topological Information 45
5.4.2 Identification using Information 2 46
5.4.3 Identification using Clustering and Information 1 46
5.4.4 Identification using Subset Relationships 47

5.5 Conclusion and Discussion . 48

5

6 CONTENTS

6 P2P Topology Management 51
6.1 Description and Motivation . 51

6.1.1 Avalanche Topology Management 51
6.1.2 The Proposed Approach 52

6.2 Theoretical Framework . 53
6.3 Algorithms . 54
6.4 Simulation Results . 56
6.5 Conclusion and Discussion . 59

Chapter 1

Introduction

Network coding is becoming a hot research area that promises to have in-
teresting applications in practical networking systems. In today’s commu-
nication networks, intermediate nodes just perform store and forward oper-
ations which means independent information routes independently through
the network.

The advent of network coding [1] has changed the above methodology:
instead of just storing and forwarding data, nodes may recombine the input
packets to generate output packets. It has been shown that there are two
main benefits of this approach. There is potential throughput improvement
and also a high degree of robustness. Similar to erasure coding, successful
reception of information does not depend on receiving original packet content
but rather on receiving a sufficient number of independent packets.

In Linear Network Coding, the relation between the input and output
packets is linearly determined. The reason for choosing a linear framework
is that the algorithms for encoding and decoding are well studied and work-
ing with them is simpler. In this framework, the condition for decoding is
receiving a sufficient number of linearly independent packets at a specific
receiver.

In this context, the problem of network code design is to choose what
linear operations each node of the network should perform. There are two
different approach introduced in the literature. First, it is possible to use
deterministic algorithms to design network codes. The polynomial-time al-
gorithm for multicast introduced in [22] is one of such example. Alterna-
tively, it is possible to simply let each node in the network select uniformly
at random the coefficients over a finite field, in a completely independent
and decentralized manner [6, 4]. This later approach is termed randomized
Network Coding.

Randomized network coding is the approach adopted by almost all prac-
tical applications. For example, Avalanche, the first implementation of a
Peer-to-Peer system that uses network coding, adopts randomized opera-

7

8 Chapter 1.

tion [13, 14]. As another example, in wireless and sensor networks [] most
proposed protocols again adapted for randomized network operation.

The reason randomized network coding is so popular is because it allows
to achieve a very simple and flexible operation without need of synchroniza-
tion, that is very well tailored to packet networks. In particular to every
packet, a coding vector is appended that determines how the packet is ex-
pressed with respect to the original data packets that exist at the source
nodes. These coding vectors enable the receivers to solve a set of linear
equations to decode and recover the original data packets.

Our work in this thesis started from the observation that coding vec-
tors implicitly carry information about the network structure (as well as its
state). We will explore these relation by investigating the properties of vec-
tors spaces defined over a finite field. Especially we are interested in random
sampling from the vectors spaces over a finite field. Then we will show that
in a system that employs randomized network coding, we can take advantage
of these properties towards different applications. Thus we will argue that,
randomized network coding, apart from more well known desirable features
it offers, can additionally provide us some information about the network it-
self. This allows us to design some centralized and decentralized algorithms
for topology inference, network tomography and network management.

Our contributions include the following. First we will investigate the
properties of vectors space in a system that uses randomized network coding
in Chapter 3 and then use these properties to explore some applications in
Chapters 4, 5, 6. These results have also appeared in [9, 10].

We will study the passive topology inference problem in Chapter 4 where
we have found that under certain conditions it is possible to uniquely identify
the topology of a network using the subspaces each node collects during the
dissemination process.

Finding the location of Byzantine attackers is the problem that is ex-
plored in Chapter 5. We have proposed different methods, compared them,
and shown that we can find the location of attacker up to a small uncertainty.

In Chapter 6, we show that the received subspaces at a specific node can
give us some information regarding the bottlenecks in a network. So we use
this idea to propose some algorithms that are peer initiated to change the
topology of a network in a way that breaks these bottlenecks.

1.1 Related Work

Network coding started by the work of Ahlswede et al. [1] who showed that,
using with network coding, and assuming the symbol size approaches infinity,
a source can multicast information at a rate approaching the smallest min-
cut between the source and any receiver. Li et al. [2] showed that linear
network coding with finite field size is sufficient for multicast. Koetter et

1.1. Related Work 9

al. [3] presented an algebraic framework for network coding.
Randomized network coding was originaly proposed by Ho et al. [6] where

they showed that randomly choosing the network code leads to a valid solu-
tion for a multicast problem with high probability if the field size is large. It
was later applied by Chou et al. [5] to demonstrate the practical aspects of
random linear network coding. Gkantsidis et al. [13, 14] also implemented
a practical file sharing system based on this idea.

Network error correcting codes, that are capable of correcting errors
inserted in the network, have been developed during the last few years. For
example see the work of Koetter et al. [15], Jaggi et al. [17], Ho et al. [18],
Yeung et al.[19, 20] and Zhang [21]. These schemes are capable of delivering
information despite the presence of Byzantine attacks in the network, as long
as the number of such attacks is limited. These network error correcting
schemes are designed to work without knowledge of the network topology.

Overlay topology monitoring and management that do not employ net-
work coding has been an intensively studied research topic, see for example
[23]. This subject for the networks using network coding is a new area of
study. Fragouli et al. [7, 8] took the advantage of the network coding capa-
bilities for active network monitoring where the focus was on link loss rate
inference. Passive inference of link loss rates has also been proposed by Ho
et al. [12]. However, the idea of passive inference of topological properties
is a novel contribution of this work.

10 Chapter 1.

Chapter 2

Modeling

The motivation of this work is based, as we are going to show, on the
fact that the coding vectors attached to every packet in a system running
randomized network coding convey some information about the topology of
the network as well as its status. We will investigate the properties of the
subspaces each node gathers during the information flow and show how we
can use them for different applications.

To the find the properties of subspaces we need to use different models,
where each one can answer some of the desired questions. In this section we
will investigate different aspects of the problem modeling.

2.1 Network Operation

Consider a network represented as a connected graph G = (V,E), with
ϑ = |V | nodes and ξ = |E| edges. For an arbitrary edge e = (i, j) ∈ E, we
denote head(e) = j and tail(e) = i. For an arbitrary node v ∈ V , let us
denote In(v) the set of incomming edges to v and Out(v) the set of outgoing
edges from v. For an undirected graph we have In(v) = Out(v).

We assume there is a source S ∈ V that has a set of n independent
packets {p1, . . . , pn}, pi ∈ F!

q, to distribute to a set of receivers using net-
work coding techniques [1], where each packet is a sequence of symbols with
fixed length # over a finite field Fq. We can think of each source packet
as corresponding to one dimension of an n-dimensional space over Fq. We
can thus associate with each packet one of the orthonormal basis vectors
{α1, . . . ,αn}, where αi ∈ Fn

q is a vector with one at position i and zero
elsewhere. It should be noted that vector αi is a part of packet pi at a fixed
position for all i = 1, . . . , n.

In general, to enable the receivers to decode, a vector of length n, called
coding vector, appended to each packet (see Figure 2.1) which determines
the linear relation between the received packets and the original packets at
the source. For each source packet pi, the coding vector equals αi. The

11

12 Chapter 2.

PayloadCoding Vector

#
n

Figure 2.1: A coding vector appended to each packet.

coding vector in each packet is affected by the same operations that act
on the whole packet during the propagation in the network. At a specific
receiver node, after collecting n independent packets zi with coding vectors
α̂i, it is possible to invert the transfer matrix

G =




α̂1
...

α̂n



 ,

and recover the original messages pi.
Assume every node performs randomized network coding, where each

node sends uniform at random linear combinations over Fq of its collected
packets to its neighbors. We say that node i ∈ V at time t observes a
subspace Πi(t) ⊆ Fn

q , if Πi(t) is the space spanned by the received coding
vectors at node i up to time t. When dim(Πi) = n, node i has collected a
basis of the n-dimensional space, and can decode the source information.

It is possible to separate the dissemination protocols as described above
into the following operation categories.

• Synchronous: All nodes are synchronized and transmit to their neigh-
bors according to a global clock tick (time-slot). At time t node i
sends linear combinations from all vectors it has collected up time
t− 1, chosen uniformly at random from Πi(t− 1). Once nodes start
transmitting information, they keep transmitting until all receivers are
able to decode.

• Asynchronous: Nodes transmit linear combinations at randomly and
independently chosen time instants.

For designing algorithms we can distinguish between different kinds of
information that we have access to. We may assume that we have the
following information.

• Global information: A central entity knows the subspaces that all ϑ
nodes in the network have observed.

• Local Information: There is no such omniscient entity, and each node
i only knows what it has received, its own subspace Πi.

2.2. Randomized Network Coding Model 13

We may also have something between these two extream cases. Moreover,
we may have a static view, where we take a snapshot of the network at a
given time instant t, or a non-static view, where we take several snapshots
of the network and use the subspaces’ evolution to design an algorithm.

2.2 Randomized Network Coding Model

Let us denote Si ∈ V , i = 1, . . . , s, as the set of source nodes that want to
multicast unit rate process Xi

1 to a set Rj ∈ V , j = 1, . . . , r, of receiver
nodes. Sources of larger rate can be modelled as multiple sources at the
same node. This is a multi-source multicast problem.

In the algebraic framework of network coding introduced in [3], the
source processes, the information processec transmitted on each link and
the receiver processes, are sequences of symbols over finite field Fq of fixed
length #. The information process Yj transmitted on a link j can be written
as a linear combination of link j’s inputs. For the delay-free case we can
write,

Yj =
∑

{i : Si=tail(j)}

ajiXi +
∑

{l : head(l)=tail(j)}

fjlYl.

The ith output process Zv,i at the receiver node v is a linear combination
of the information process on its incomming links, where can be written as
follows,

Zv,i =
∑

{l : head(l)=v}

bv,i,lYl.

It is shown in [3] that for multicast on a network with link delays, memory
is needed at the receiver nodes but memoryless operation is sufficient at all
intermediate nodes. In this case the equation of the network can be written
as

Yj(t + 1) =
∑

{i : Si=tail(j)}

ajiXi(t + 1) +
∑

{l : head(l)=tail(j)}

fjlYl(t),

and the process received at node v as

Zv,i(t + 1) =
µ∑

τ=0

b
′
vi(τ)Zv,i(t− τ) +

∑

{l : head(l)=v}

µ∑

τ=0

b
′′
v,i,l(u)Yl(t− τ),

where µ represents the memory required. These equations can be repre-
sented algebraically in terms of a delay variable D:

Yj(D) =
∑

{i : Si=tail(j)}

ajiXi(D) +
∑

{l : head(l)=tail(j)}

DfjlYl(D)

Zv,i(D) =
∑

{l : head(l)=v}

bv,i,l(D)Yl(D),

1Each source process Xi has an entropy rate of one bit per unit time.

14 Chapter 2.

where

Xi(D) =
∞∑

t=0

Xi(t)Dt

Yj(D) =
∞∑

t=0

Xj(t)Dt

Zv,i(D) =
∞∑

t=0

Zv,i(t)Dt,

and

bv,i,l(D) =
∑µ

τ=0 Dτ+1b
′′
v,i,l(τ)

1−
∑µ

τ=0 Dτ+1b
′
vi(τ)

.

We can collect the coefficient {aji, fjl, bv,i,l} into ξ × s matrix A, ξ × ξ
matrix F and |In(v)|×ξ matrix Bv whose structure is constrained by the net-
work. In the framework defined above, a tuple (A,F,BR1 , . . . , BRr) can be
called a linear network code. As it is shown in [3], the mapping from source
processes X = [X1, . . . ,Xs]T to output processes Zv = [Zv,1, . . . , Zv,In(v)]T

can be presented as follows

Zv = Bv(I − F)−1AX,

for the delay-free case and

Zv(D) = Bv(D)(I − F (D))−1A(D)X(D),

for the network that has delay, where A(D) = DA and F (D) = DF .
For a given multicast connection problem if some network code (A,F,BR1 , . . . , BRr)

in a field Fq or Fq(D) satisfies the condition that BRi(I −F)A has full rank
s for each receiver Ri then we can see that the problem has a solution in the
same field.

Definition 2.1. A multicast connection problem for which there exist a
solution in some field Fq or Fq(D) is called feasible.

Definition 2.2. If for a receiver Ri there exists some value of BRi such
that BRi(I −F)−1A has full rank s, then (A,F) is a valid network code for
receiver Ri. A network code (A,F) is valid for a multicast problem if it is
valid for all receivers.

It is shown that we can find a linear network code for a given multicast
problem using the knowledge of topology; for example see [11, 22]. But in
practical applications, usually it is very costly to implement such algorithms
specially when the communication between nodes are limited or expensive.
In [6], the authors consider a randomized approach in which network nodes

2.3. Definitions and Notation 15

independently and randomly choose code coefficients, (A,F), from some
finite field Fq. They give a lower bound on the probability of success and
show that this probability goes to 1 as q goes to infinity. The following
theorem represents this relation more clearly.

Theorem 2.1. For a feasible multicast connection problem, and a network
code in which some or all code coefficients (A,F) are chosen independently
and uniformly over a finite field Fq (some coefficients can take fixed values as
long as these values preserve feasibility), the probability that all the receivers
can decode the source processes (the selected code is valid) is at least (1 −
r/q)ν for q > r, where r is the number of receivers and ν is the number of
links that have random coefficients.

2.3 Definitions and Notation

Let Πi(t) denote the subspace node i has collected up to time t. For simplic-
ity of notation, we will drop t when not necessary and use Πi. To compare
subspaces Πi and Πj, we will denote:
the dimension of each subspace as

di ! dim(Πi), ∀i ∈ V,

the dimension of the intersection of two subspaces as

dij ! dim(Πi ∩Πj), ∀i, j ∈ V,

and the dimension of the joint span of two subspaces as

Dij ! dim(Πi ∪Πj), ∀i, j ∈ V,

where by union we mean the common span of Πi, Πj , i.e., Πi ∪Πj = span{Πi,Πj}.
Note that di + dj = dij + Dij . For a set of nodes U = {u1, . . . , um}, we will
denote as dU ! dim(Πu1 ∪ . . . ∪Πum). We also use the following metric de-
fined to measure the distance between two subspaces,

δij ! dim(Πi ∪Πj)− dim(Πi ∩Πj), ∀i, j ∈ V,

= Dij − dij .

This metric was also introduced in [15], where it was used to design error
correction codes.

We will consider connected networks, where each node, apart from the
source, has at least one node (parent) transmitting information to it. If
node i has pi parents u1, . . . , upi , we will denote with Π(uj)

i (t) the sub-
space node i has received from parent uj up to time t, and with π

(uj)
i (t)

the subspace node i receives from parent uj at exactly time t. Then we

16 Chapter 2.

define πi(t) as the whole subspace (from all parents) node i received at
time t. Thus, Π(uj)

i (t) = Π(uj)
i (t− 1) ∪ π

(uj)
i (t), πi(t) = ∪pi

j=1π
(uj)
i (t), and

Πi(t) = ∪pi
j=1Π

(uj)
i (t).

Initially, at time t = 0, the subspaces of all nodes (apart the source) are
empty. We define the filling time as following,

Definition 2.3. The filling time threshold τf of a dissemination algorithm,
is the first time τf at which each edge of the network has been used at least
once.

For time t < τf there exist some edges in the network that have not used
yet. For t ≥ τf , all nodes receive packets from all their incoming edges. It
should be noted that the time τf depends upon the structure of the network
as well as the dissemination protocol itself used by every node.

2.4 Oblivious Model for Randomized Network Coding

Here we explain the idea of communication using the subspaces in a network
performing randomized network coding that was introduced in [15]. In the
following, we use the same notation as used in Section 2.1. Let {p1, . . . , pn},
pi ∈ F!

q denote the set of injected packets into the network. Assume that
there is no error. An arbitrary receiver Ri collects m packets zj where each
zj can be presented as zj =

∑n
i=1 hjipi. The coefficients hji are unknown

and randomly chosed over Fq. On the other hand, if t erroneous packets,
{e1, . . . , et}, are injected by an adversary into the network we can write

zj =
n∑

i=1

hjipi +
t∑

k=1

gjkek,

where again gjk ∈ F are unknown coefficients. In matrix form, the trans-
mission model can be represented as

z = Hp + Ge,

where H and G are random m×n and m× t matrices, p is the n× # matrix
whose rows are the transmitted packets, and e is the t×# matrix whose rows
are the error packets.

The matrices H and G are random but the network topology imposes
some constraints on these matrices. As stated in [15], the above model
naturally lead us to consider information transmission not via the choice of
pi but rather by the choice of the vector space spaned by {pi}.

Let W be a fixed #-dimensional vector space over Fq. Let also P(W)
denote the set of all subspaces of W . It is obvious that all the transmitted
and received packets are vectors of W . We will give the definition of “oper-
ator channel” which is a usefull model in the context of randomized network
coding [15].

2.5. Algebraic Model for Synchronous Networks 17

Definition 2.4. An operator channel associated with space W is a channel
with input and output alphabet in P(W). The channel transfer relation
between input Πp and output Πz is as follows,

Πz = Hk(Πp)⊕ E,

where Hk is an erasure operator, E ∈ P(W) is an arbitrary error space, and
⊕ denotes the direct sum. If dim(Πp) > k, the erasure operator Hk projects
Πp onto a randomly chosen k-dimensional subspace of Πp; otherwise, Hk

leaves Πp unchanged.

In fact, the operator channel takes a vector space as its input and puts
out another vector space where it may delete some vectors from the input
space and add some new vector to it.

In reference [15], the authors used this model to design codes that al-
low communication in networks performing randomized network coding. In
Chapter 5, we will assume this model of communication when searching the
location of Byzantine adversaries.

2.5 Algebraic Model for Synchronous Networks

In this section an algebraic approach will be introduced that is useful to
model synchronous networks. This approach is similar to [3], with a slightly
changed dissemination protocol. Suppose the network is synchronous and
each link has unit delay. We assume that each node waits for a finite time
before it starts to send out packets. After starting the transmission, each
node sends packets on all its outgoing edges at every time slot. If the
waiting time is zero for all nodes we will be in the case of usual synchronous
networks. The waiting times will be used in the following chapters to enforce
the subspaces of different nodes be distinct.

Suppose we are interested in finding the transfer relation between the
source and an arbitrary node v. Let X(t) be an |Out(S)|× n matrix which
represents the coding vectors that the source node injects to the network at
time t. The ξ × n matrix Y (t) collects the coding vectors of all messages
that pass through the edges of the network at time t. Suppose F is the
adjacency matrix of the labeled line graph of the graph G which is defined
as follows

Fij =
{

1 head(ei) = tail(ej),
0 otherwise.

From the definition, we know that F is a ξ×ξ matrix. Let F (t)
0 , F (t)

1 , . . . , F (t)
t

be a sequence of random matrices over Fq which conform to F , for i *= j,
(F (t)

k)ij = 0 wherever Fij = 0 and having random numbers from Fq in other
places.

18 Chapter 2.

Using the waiting time of each node we can compute the time at which
an edge starts to convey packets. Let δ1, . . . , δξ denote these times. Using
the step function u(t) defined as follows,

u(t) =
{

1 t ≥ 0,
0 otherwise,

let us write the ξ × ξ diagonal matrix U(t) as,

Uii(t) =
{

u(t− δi) if δi > li,
1 otherwise,

where li is the shortest path from source to arbitrary edge i.
In our model the nodes have memory. Using the above definitions, the

set of vectors that each node v receives in every time instant t can be written
as follows






Y (t + 1) = AX(t + 1) + U(t + 1)
∑t

i=0 F (t)
i Y (t− i),

Zv(t + 1) = BvY (t),
(2.1)

where A is a ξ× |Out(S)| matrix which denotes the connection of node S to
the rest of the network. In the same way matrix Bv defines the connection
of node v to the set of edges in network. It is also important to note that
Bv is a |In(v)| × ξ matrix.

Suppose we are interested in finding the output of such a system up to
some predefined time T . We can rewrite the above equation by defining new
matrices as follows. For the input vectors let us define

X =




X(0)

...
X(T − 1)





T |Out(S)|×n

.

For the states of system we define

Y =




Y (0)

...
Y (T − 1)





ξT×n

,

and for the output we can write

Zv =




Zv(1)

...
Zv(T)





T |In(v)|×n

.

2.5. Algebraic Model for Synchronous Networks 19

We also define a new set of matrices which represent the input-output rela-
tion. Using matrix A we define the following matrix

A = IT ⊗A =




A

. . .
A





ξT×T |Out(S)|

.

We do the same thing for matrix Bv,

Bv = IT ⊗Bv =




Bv

. . .
Bv





T |In(v)|×ξT

.

We define matrix F which represent how the states are related to each other:

F =





0 0 0 0 · · ·
F (0)

0 0 0 0 · · ·
F (1)

1 F (1)
0 0 0 · · ·

F (2)
2 F (2)

1 F (2)
0 0 · · ·

...
...

...
... . . .





ξT×ξT

.

At the end, we introduce matrix U that represent the starting transmission
time for each edge,

U =





Iξ×ξ

U(1)
. . .

U(T − 1)





ξT×ξT

.

Using the above definitions we can rewrite Equation 2.1 up to time T as
follows 





Y = AX + UFY ,

Zv = BvY .
(2.2)

This equation can be solved to find the input-output transfer matrix up to
time T which results in

Zv = Bv(I −UF)−1AX . (2.3)

From the definition of matrix F , we know that it is a “strictly lower tri-
angular matrix” which means F is nilpotent and we have F T = 0. The
same applies for the matrix UF , which means we have (UF)T . Then the
input-output relation can be written as

Zv = Bv
(
I + UF + (UF)2 + · · · + (UF)T

)
AX. (2.4)

20 Chapter 2.

It should be noted that if all nodes operate synchronously from the start of
transmission, which equivalently means that if δe equals the shortest path
length from the source to the edge e, we will have U = IξT×ξT .

The source S has n messages which are represented using n vectors
forming a set of basis for the space Fn

q . In every time slot, the source node
sends different uniformly at random selected vectors from its space to the
outgoing edges. The middle nodes in the network, after the waiting time,
also do the same. Each node v which is interested in receiving the set of
source’s messages, gathers all received vectors up to some time T ≥ n

In(v)
in Zv and checks whether it has rank equal to n or not. If the rank of Zv

becomes n there exist n linearly independent row vectors in Zv forming a
set of basis for Fn

q that enable node v to recover the source messages.

Chapter 3

Some Notes on Vector Spaces
over a Finite Field Fn

q

We will here state and prove basic properties and results that we will exploit
towards various applications in the following chapters. In particular, we
will investigate the properties of random sampling from vector spaces over
a finite field. These properties are the core of our work in the following
chapters. Moreover we will study the rate of receiving innovative packets in
a synchronous multicast problem setting.

3.1 Sampling Subspaces over Fn
q

The notion of vectors spaces over a finite field Fq is a very important tool
for the problems we are going to consider in the following chapters. In
particular, the random sampling of subspaces of Fn

q and finding properties
play an important role in our work. In fact these properties give us a better
insight and understanding of randomized network coding. In this section we
study some of these basic properties.

Lemma 3.1. Suppose we choose m vectors from n-dimensional space W =
Fn

q uniformly at random to construct space ΠA. The probability that ΠA will
be a k-dimensional subspaces of W is bounded as

Pr(dim(ΠA) = k) ≤
(

m

k

) k−1∏

i=0

qn − qi

qn

(
qk

qn

)m−k

=
(

m

k

) k−1∏

i=0

(1− qi−n)q(k−n)(m−k).

Note that this bound is tight for k = m.

Proof. Use union bound.

21

22 Chapter 3.

Lemma 3.2. Let us construct ΠA by choosing m vectors uniformly at ran-
dom from W = Fn

q . The subspace ΠA will be full rank with probability greater
than 1−O(q−n+m−1).

Proof. Let us write

Pr(dim(ΠA) = m) =
m−1∏

i=0

(1− qi−n)

≥
(

1−
m−1∑

i=0

qi−n

)
.

So we are done.

Lemma 3.3. Let Πi and Πj be subspaces of Fn
q with dimension di and dj

respectively and intersection of dimension dij . Construct Π′
i by choosing m

vectors from Πi uniformly at random. Then Pr(Π′
i ⊂ Πj) ≈ 0, if Πi ! Πj .

Proof. The probability that all m vectors are in the intersection is

Pr(Π′
i ⊂ Πj) =

(
qdij

qdi

)m

= q(dij−di)m,

which is of order O(1/q) provided that dij < di.

In the following we are going to show one of the most important prop-
erties of randomly selected subspaces. We will show that randomly selected
subspaces tend to be “as far as possible”. We will clarify and make precise
what we mean by “as far as possible”. First let us define a subspace in
general position with respect to a family of subspaces as stated in [16].

Definition 3.1. Let W be an n-dimensional space over field F and for
i = 1, . . . ,m, let Πi be a subspace of W , dim(Πi) = di. A subspace Π ⊆ W
of dimension d is in general position with respect to the Πi if

dim(Πi ∩Π) = max{di + d− n, 0} for i = 1, . . . ,m. (3.1)

It should be noted that max{di+d−n, 0} is the minimum possible dimen-
sion of (Πi ∩ Π). So what the above definition says is that the intersection
of Π and each Πi is as small as possible.

Using the above definition let us state the following theorem.

Theorem 3.1. Suppose {Πi}, i = 1, . . . ,m, are subspaces of W = Fn
q . Let

us construct subspace Π by randomly choosing m vectors from W . Then Π
will be in general position with respect to the family {Πi} with high probability
if q / 1.

3.1. Sampling Subspaces over Fn
q 23

Proof. First of all using Theorem (3.5) in [16], we know that there exists a
subspace in general position with respect to all Πi if q is sufficiently large.
So it is sufficient to proove (3.1) for one specific i. The following lemma,
Lemma 3.4, completes the proof.

Lemma 3.4. Suppose Πk is a k-dimensional subspace of vector space W =
Fn

q . Let us take m vectors uniformly at random from W to construct the
subspace Π. Under the assumption that q / 1 we have

Pr[dim(Π ∩Πk) = d] ≈
{

1 d = min (k, (m− (n− k))+) ,
0 otherwise.

Proof. Let Π⊥
k be the subspace that has the property Πk∪Π⊥

k = W . Suppose
that U = {u1, . . . , uk} and V = {v1, . . . , vn−k} are sets of basis for Πk and
Π⊥

k respectively. Let {w1, . . . , wm} denote the vectors that are taken from
W . It should be noted that (U ∪ V) form a set of basis for W so we can
expand the vectors wi with respect to this basis as follows

wi =
k∑

j=1

α(i)
j uj +

n∑

j=k+1

α(i)
j vj−k, i = 1, . . . ,m.

We put the vectors α(i) with length n in a n × m matrix columnwise as
follows

A =




| |

α(1) · · · α(m)

| |



 =





Ũk×m

Ṽ(n−k)×m





.

Now let us proceed as follows. Write an arbitrary linear combination
of vectors wi as multiplication of matrix A with an arbitrary m× 1 vector
a from the right handside. Consider only the vectorss that are inside Πk.
Then find the probability of this subspace having some specified dimension.
Using the defined notation we can write

Aa = b,

or 



Ũk×m

Ṽ(n−k)×m





·




a1
...

am



 =





b1
...
bk

0(n−k)×1




.

24 Chapter 3.

Considering the n − k lower equations in the previous matrix equation, we
can write

Dk = dim(Kernel(Ṽ)) = m− Rank(Ṽ).

We have assumed that q / 1 so matrix Ṽ is full rank with high probability
and we have

Dk = m−min(m,n− k)
= (m− (n− k))+ , w.h.p.

Let {x1, . . . , xDk} denotes for the set of basis for the kernel of Ṽ . We
put these vectors in a (Dk ×m) matrix columnwise as follows

X =




| |

x1 · · · xDk

| |



 .

It should be noted that Dk ≤ m so matrix X is full rank. As we take wi

uniformly at random from Fn
q , matrix Ũ is also full rank. We can conclude

that the product ŨX is a full rank matrix with rank min(k,Dk). The rank
of matrix ŨX is the number of independent columns in it which determines
the dimension of the disjoint space of Π and Πk. So we are done.

Corollary 3.1. Suppose Π1 and Π2 are two subspace of Fn
q with dimension

d1 and d2 respectively and joint dimension d12. Let us take m1 vectors
uniformly at random from Π1 and m2 vectors from Π2 to construct subspaces
Π̂1 and Π̂2. Assuming q / 1 we have

Pr[dim(Π̂1 ∩ Π̂2) = d] ≈
{

1 d = α,
0 otherwise,

where

α = min






d12,
(m1 − (d1 − d12))+,
(m2 − (d2 − d12))+,
(m1 + m2 − (d1 + d2 − d12))+.

Proof. Let us write

Pr[dim(Π̂1 ∩ Π̂2) = d]

=
d12∑

k=0

Pr[dim(Π̂1 ∩ Π̂2) = d | dim(Π̂1 ∩Π12) = k] · Pr[dim(Π̂1 ∩Π12) = k].

From Lemma 3.4 we have

Pr[dim(Π̂1 ∩ Π̂2) = d]

≈ Pr
[
dim(Π̂1 ∩ Π̂2) = d | dim(Π̂1 ∩Π12) = min(d12, (m1 − (d1 − d12))+)

]
.

3.2. Rate of Innovative Packets 25

Let us define l = min(d12, (m1 − (d1 − d12))+) then we can rewrite the
previous equation as follows

Pr[dim(Π̂1 ∩ Π̂2) = d]

=
∑

Πl∈Π12
dim(Πl)=l

Pr
[
dim(Π̂1 ∩ Π̂2) = d | Π̂1 ∩Π12 = Πl

]
· Pr[Π̂1 ∩Π12 = Πl].

Since we choose Π̂1 uniformly at random and we know that dim(Π̂1∩Π12) = l
with high probability. Thus

Pr[Π̂1 ∩Π12 = Πl] =
1

of distinct Πl ∈ Π12, dim(Πl) = l
,

and

Pr[dim(Π̂1 ∩ Π̂2) = d] ≈ Pr
[
dim(Π̂1 ∩ Π̂2) = d | Π̂1 ∩Π12 = Πl

]
,

where Πl is an arbitrary subspace of Π12 with dimension l. Using the
Lemma 3.4 we can write

Pr[dim(Π̂1 ∩ Π̂2) = d] ≈
{

1 d = min(l, (m2 − (d2 − l))+) = α,
0 otherwise.

So we are done.

Corollary 3.2. Let us construct two subspaces Π̂1 and Π̂2 by choosing m1

and m2 vectors uniformly at random respectively from Fn
q . The subspace Π̂1

and Π̂2 will be disjoint with probability nearly to 1 if q / 1 and m1+m2 ≤ n.

Proof. In the Corollary 3.1 put Π1 = Π2 = Fq
n.

3.2 Rate of Innovative Packets

In the following chapters we will need to know the rate of receiving innovative
vectors at receivers in a multicast senario. As it is shown in [1], the source
can multicast at rate equale to the minimum min-cut of all receivers as
stated in the following theorem

Theorem 3.2. Consider a directed graph G(V,E) with unit capacity edges,
s unit rate sources located on the same vertex of the graph and r receivers
that are interested to receive all the sources’ information. Assume that the
value of the min-cut between each receiver and source node is s. Then there
exist a multicast transmission scheme over a large enough finite filed Fq,
in which the intermediate nodes linearly combine their incoming informa-
tion symbols over Fq, that delivers the information from the sources to each
receiver simultaneously at a rate equal s.

26 Chapter 3.

Proof. For the proof see [1], [3] or [4].

For the discussion in the following chapters we will need a variation of
Theorem 3.2 that is changed in a way useful for the protocol described in
Section 2.5.

Theorem 3.3. The min-cut from the source S to receiver Rv equals the
average rate at which Rv receives innovative packets. In particular, in the
protocol described in Section 2.5 (that include the usuall synchronized dis-
semination protocol), after waiting for enough time, node v receives cv in-
novative packet per time slot from its parents if q and n is sufficiently large
where cv = min-cut(v).

Proof. Knowing that the min-cut of node v is cv, let us choose a set of
incoming edges to v with size cv such that there exist cv edge disjoint paths
from S to each edge in the set and find the input-output transfer matrix
just for this set of edges. Let us rewrite (2.3) as

Ẑv = B̂v(I −UF)−1AX

= B̂v(I + UF + (UF)2 + · · · + (UF)T)AX, (3.2)

where B̂v is a cvT × ξT matrix. Let f t,k
ij denote for the entries of F (t)

k and

x(t)
ij denote for the entries of X(t). Every node in the network performs

random linear network coding so x(t)
ij and f t,k

ij (those that are not zero) are
chosen uniformly at random from Fq.

From (3.2) we know that each entry of Ẑv is a polynomial of degree at
most T +1 in variables x(t)

ij and f t,k
ij . Let us define Ẑ

i
v be a n×n submatrix

of Ẑv that starts from ith row of Ẑv and includes n consecutive rows. Then
we can conclude that the determinant of Ẑ

i
v is a polynomial of degree at

most (T + 1)n in variables x(t)
ij and f t,k

ij .

After passing the filling time τf , we know that for every Ẑ
i
v, i > τf , there

exists a trivial solution for variables x(t)
ij and f t,k

ij (that connects Rv directly
to S and source sends a set of basis at proper time on proper outgoing edges)
that lets Ẑ

i
v be full rank. This means that det(Ẑ

i
v) is a non-zero polynomial

after the transition phase. Using the Schwartz-Zippel lemma we can upper
bound the probability that Ẑ

i
v is not full rank as follows

Pr[det(Ẑ
i
v) = 0] ≤ (T + 1)n

q
.

This means that assuming q and n is large enough we will be sure with high
probability that each node v receives at least cv innovative packets per time
slot.

3.2. Rate of Innovative Packets 27

Now we will show that there exist a time τs where for t ≥ τs node v
receives exactly cv innovative packets per time slot. If |In(v)| = cv we are
done because it is not possible to send more than cv innovative packets in
one time slot using cv edges. If |In(v)| > cv the minimum cut between S and
v takes place somewhere in the middle of network. We can divide the set of
nodes into two parts VS and Vv such that VS ∪ Vv = V and VS ∩ Vv = ∅.
Let also ESv denote the edges from VS to Vv. As we stated before ESv is
a minimum cut so |ESv| = cv. Using a similar argument as stated above
it is obvious that for t > τf in every time slot ESv brings cv innovative
packets from VS to Vv. Using the above notation let us write the following
inequalities for t > τf ,

cvt ≥ # of independent vectors received by set Vv up to time t

≥ # of independent vectors received by node v up to time t

= Rv(t)× t,

where Rv(t) is the average rate of receiving innovative packets at node v up
to time t. Let Rv(t) be the rate of receiving innovative packets to node v at
time slot t so we have,

Rv(t) =
1
t

t∑

i=1

Rv(t).

It is also obvious that the average rate Rv(t) is equal to cv as time goes to
infinity.

We know that Rv(t) ≥ cv for t > τf and Rv(t) ≤ cv for all t. At the start
of transmission where t < τf , Rv(t) is less than cv because the network has
not been yet filled with the information packets. Since τf is a finite time,
Rv(t) can be less than cv just for a finite time so there should be a time τs

after that Rv(t) = cv. which completes our proof.

Based on Theorem 3.3, let us state the following definition.

Definition 3.2. For a specific dissemination protocol in a network, we de-
fine the steady state phase as the period in which each node v receives exactly
cv innovative packets per time slot and none of the nodes, except source S,
have collected n linearly independent packets.

28 Chapter 3.

Chapter 4

Topology Inference

In this chapter, using the ideas developed in Chapter 3, we will investigate
the the relation between the network topology and the subspaces collected
at the nodes for senario introduced in Section 2.1. We will further explore
the conditions that allow us to passively infer the network topology.

4.1 Tree Topologies

Let G = (V,E) be a network that is a directed tree of depth1 D, rooted at
the source node S. We will present (i) necessary and sufficient conditions
under which the tree topology can be uniquely identified, and (ii) given that
these conditions are satisfied, algorithms that allow us to do so.

We first consider trees where each edge has the same capacity c, and
thus the min-cut from the source to each node of the tree equals c. We then
briefly discuss the case of undirected trees. Finally we examine the case
where edges have different capacities, and thus nodes may have different
min-cuts from the source.

4.1.1 Common Min-Cut

Assume that each edge of the tree has capacity c, and consider the following
dissemination algorithm, also summarized2 in Algorithm 4.1.1. Each node i
waits until its subspace dimension becomes mi, i.e., di ≥ mi (for this section
we will use a common value mi = m). It then starts transmitting to each of
its children c random linear combinations per time-slot.

1The depth of a tree is the length of the longest path between the root and a leaf of
the tree.

2Though the Algorithm 4.1.1 is introduced for trees, it will also be used for general
topologies in Section 4.2.

29

30 Chapter 4.

Algorithm 4.1.1: input(G = (V,E), S, {mi}, n)

for each i ∈ V \ {S}
do Πi(0) = Ø, di(0) = 0

t← 0
while mini di(t) < n

do






for each i ∈ V
if di(t) ≥ mi

then node i transmits from Πi(t)
t← t + 1
for each i ∈ V update Πi(t), di(t)

The following theorem presents necessary and sufficient conditions that
enable us to identify the network topology using a single snapshot of all
node’s subspaces at a time t.

Theorem 4.1. Consider a tree of depth D where each edge has capacity
c, and the dissemination algorithm in (4.1.1). A static global view of the
network at time t, with (D − 1)m < t < n

c , allows to uniquely determine the
tree structure, if and only if

c + 1 ≤ m. (4.1)

Proof. The proof is based on the following simple observations. In a tree
there exist a unique path P = {S, i1, . . . , il, i} from source S to node i.
Clearly, in steady-state, for the nodes along the path it holds that

Πi ⊂ Πil ⊂ · · · ⊂ Πi1 ⊂ Fn
q = ΠS . (4.2)

The conditions on t ensure that the network is in steady-state, i.e., all nodes
have a non-empty subspace and no node’s subspace (apart the source) equals
the complete n-dimensional space.

Thus to identify the topology of the tree it is sufficient to show that
Πi ! Πj for any j that is not in P. But this is what the condition in (4.1)
ensures. Indeed, consider a node u ∈ V in the tree that has k children
u1, . . . , uk. If (4.1) holds, from Corollary 3.1, then Πui *= Πuj for all i, j if
and only if m ≥ c + 1 and q / 1.

Thus the condition (4.1) on m ensures that the subspaces of all nodes
in the tree are distinct during the steady-state phase. Obviously, if two
nodes observe exactly the same subspace at time t, we can never distinguish
between them; ensuring distinct subspaces is clearly necessary for identifia-
bility.

The simple network in Figure 4.1 can help us better understand why the
conditions on m in Theorem 4.1 are both necessary and sufficient. Assume

4.1. Tree Topologies 31

that the edges have unit capacity (c = 1). At time t = 1, node A receives a
vector y1 from the source S. If node A starts transmitting to nodes B and
C at time t = 2, then nodes B and C will both receive the same vector y1,
i.e., ΠB(2) = ΠC(2) = span{y1}. In fact, at all subsequent times, we will
have that ΠB(t) = ΠC(t) = ΠA(t − 1). If instead, node A waits to collect

S

A

B C

Figure 4.1: Directed tree with four nodes rooted at the source S.

c + 1 = 2 vectors, say y1 and y2, before starting transmission to nodes B
and C, then it will hold that ΠB(t) *= ΠC(t), for 2 ≤ t ≤ n + 1.

Assume now that Theorem 4.1 holds. To determine the tree structure,
it is sufficient to determine the unique parent each node has. From the
previous arguments, the parent of node i is the unique node j such that
Πj is the minimum dimension subspace that contains Πi. Then, the parent
of node i is the node j such that, j = argmink:dik=di

dk. Note that to
determine the tree topology, we do not need to know exactly which are the
node subspaces, but only two “sufficient statistics”: the dimension of each
subspace di = dim(Πi), ∀i, and the dimension of the intersection of every
two subspaces dij = dim(Πi ∩ Πj), ∀i, j, as described in Algorithm 4.1.2,
assuming that the conditions of Theorem 4.1 hold.

Algorithm 4.1.2: TREE({di}, {dij})

for each i ∈ V

do






if di = n, i← S
else node i has parent the node j with

j = argmink:dik=di
dk

4.1.2 Directed v.s. Undirected Network

In a tree with a single source, since new information can only flow from the
source to each node along a single path, whether the network is directed
or undirected makes no difference. In other words, from condition 4.2, all
vectors that a node will send to its predecessor will belong in the subspace
the predecessor already has. Thus Theorem 4.1 still holds for undirected
networks with a common min-cut.

32 Chapter 4.

4.1.3 Different Min-Cuts

Assume now that the edges of the tree have different capacities. As a result,
potentially mincut(S, i) *= mincut(j, i), for some node j in the path P that
connects node i to the source S. Note that, under Algorithm 4.1.1, for the
subspaces of the nodes in the path between S and i, condition (4.2) still
holds. However, it is possible that we cannot distinguish between nodes
at same level with a common parent. For example, if in the network in
Figure 4.1, edge SA has unit capacity, while edge AB and AC have ca-
pacity two. In this case it is easy to see that there exists t0 such that
ΠB(t) = ΠC(t) = ΠA(t− 1), ∀t ≥ t0. Clearly in this case, we cannot distin-
guish between nodes B and C with this dissemination protocol.

4.2 General Topologies

Consider now an arbitrary network topology, corresponding to a directed
graph. An intuition we can get from examining tree structures is that, we can
distinguish between two topologies provided all node subspaces are distinct.
The following theorem3 claims that this is in fact a sufficient condition for
topology identifiability over general graphs.

Theorem 4.2. In a synchronous network employing randomized network
coding over Fq, a sufficient condition to uniquely identify the topology with
high probability as q / 1, is that

Πi(t) *= Πj(t) ∀ i, j ∈ V, i *= j, (4.3)

for some time t. We can achieve this by collecting global information at
times t and t + 1, i.e., two consecutive static views of the network.

Proof. Assume node i has the pi parents P (i) = {u1, . . . , upi}. Let Π(u1)
i (t), . . . ,Π(upi)

i (t)
denote the subspaces node i has received from its parents up to time t, where
Πi(t) = ∪pi

j=1Π
(uj)
i (t). From construction it is clear that Π(uj)

i (t+1) ⊆ Πuj (t).
To identify the network topology, it is sufficient to decide which node

v ∈ V is the parent that sent the subspace Π(uj)
i (t) to node i for each j, and

thus find the pi parents of node i. We claim that, provided (4.3) holds, node i
has as parent the node v which at time t has the smallest dimension subspace
containing Π(uj)

i (t+1). Thus we can uniquely identify the network topology,
by two static views, at times t and t + 1, as Algorithm 4.2.1 describes.

Indeed, let π
(uj)
i (t) denote the subspace that node i receives from parent

uj at exactly time t, that is, Π(uj)
i (t + 1) = Π(uj)

i (t) ∪ π
(uj)
i (t + 1).

• If π
(uj)
i (t + 1) ! Πv(t) for all v ∈ V \{uj}, clearly Π(uj)

i (t + 1) ! Πv(t) for
all v ∈ V \{uj}, and we are done.

3Note that if we identify the parents of each node, we know the graph topology.

4.2. General Topologies 33

• Assume now there exist two nodes j and k such that Π(uj)
i ⊆ Πj ⊂ Πk.

From Lemma 3.3, node i cannot be a child of node k, because then we would
have that π

(uj)
i ! Πj , and as a result, Π(uj)

i ! Πj. Thus it can only be a
child of node j.

Note that to identify the network topology, we need to know, for all nodes
i, the dimension of their observed subspaces at time t, the dimension d̂

u(i)
j

!

dim(Π(uj)
i (t+1)) for all parents j of node i, and the dimension of the intersec-

tion of Π(uj)
i (t+1) with all Πk(t), denoted as d̂

ku(i)
j

! dim(Π(uj)
i (t + 1) ∩Πk(t)).

Algorithm 4.2.1 uses this information to infer the topology.

Algorithm 4.2.1: GEN({di(t)}, {d̂u(i)
j
}, {d̂

ku(i)
j
})

for each i ∈ V

do






if di = n, i← S
else node i has parent the node j with

j = argmink:d̂
ku

(i)
j

=d̂
u
(i)
j

dk(t)

The sufficient conditions in (4.3), Theorem 4.2, may or may not hold,
depending on the network topology and the information dissemination pro-
tocol. Next, we will investigate under what conditions there exist values
{mi} for the simple dissemination algorithm 4.1.1 so that (4.3) holds, and
the network topology is identifiable.

Lemma 4.1. Consider two arbitrary nodes i and j, where P (i) = {u1, . . . , upi}
and P (j) = {v1, . . . , vpj} are the parents of i and j respectively. Let ΠP (i)(t−
1) = ∪pi

l=1Πul(t − 1) and ΠP (j)(t − 1) = ∪pj

l=1Πvl(t − 1). The condition
ΠP (i)(t− 1) *= ΠP (j)(t− 1) is sufficient to guarantee that Πi(t) *= Πj(t).

Proof. Let us assume that Πi(t) = Πj(t) = Π. This implies that if πi(t) and
πj(t) are subspaces collected at time t then,

πi(t) ∪Πi(t− 1) = πj(t) ∪Πj(t− 1) = Π.

From construction, Πi(t − 1) ⊆ ΠP (i)(t − 1) and πi(t) ⊆ ΠP (i)(t− 1) so we
have Π ⊆ ΠP (i)(t− 1). The same is true for node j, Π ⊆ ΠP (j)(t− 1).

On the other hand, using Lemma 3.3, since we randomly chose πi(t)
from ΠP (i)(t − 1) and since πi(t) is a subspace of Π, we should have that
ΠP (i)(t− 1) ⊆ Π, and similarly that ΠP (j)(t− 1) ⊆ Π. We conclude that

ΠP (i)(t− 1) = ΠP (j)(t− 1) = Π,

which gives us the result.

34 Chapter 4.

Now consider the parents of nodes i and j as supernodes P (i) and P (j).
Using a similar argument we can conclude that the parents of P (i) and P (j),
denoted as P 2(i) and P 2(j), satisfy

ΠP 2(i)(t− 2) = ΠP 2(j)(t− 2) = Π,

where Πi(t) = Πj(t) = Π, and dim(Π) = d < n. Continuing this procedure,
and including at least one new node in the set of parents at each step, we
will at some step #, either have P !(i) include the source node S, which leads
to a contradiction since the dimension of the subspace ΠP !(i)(t− #) is d < n

(similarly if P !(j) includes the source S), or that P !(i) = P !(j). To resolve
this last case, we evoke the following theorem.

Theorem 4.3. Suppose two arbitrary nodes i and j have a common set
of parents P ! = P !(i) = P !(j) at a level #. The following conditions are
sufficient to let exist some {mi} for the Algorithm 4.1.1 such that (4.3) will
be satisfied4:

ĉi = min-cut(P !, i) ≤ min-cut(S,P !) = cp,

ĉj = min-cut(P !, j) ≤ min-cut(S,P !) = cp.

Proof. Let us assume that t0 is the first time that dim(ΠP !) ≥ cp + 1 and
the time after which P ! receives innovative packets at a rate of cp. Assume
that P ! starts transmission after t0. For t1 time slots later we can write

dim(ΠP !(t0 + t1)) ≥ t1cp + cp + 1.

For node i we can also write

dim(Πi(t0 + t1 + l)) ≤ (t1 + 1)ĉi ≤ t1cp + cp.

The same inequality holds for the dimension of Πj(t0 + t1 + l). Thus for
t− l > t0 we cannot have ΠP !(t− l) = Πi(t) and ΠP !(t− l) = Πj(t). Using
Lemma 4.1 we are done.

Intuitively, what the previous theorems tell us is that, if for a node i
there exists a path that does not belong in any cut between the source and
another node j, then nodes i and j will definitely have distinct subspaces.
The only case where nodes i and j may have the same subspace is, if they
have a common set of parents, a common cut. Even then, they would need
both of them to receive all the innovative information that flows through the
common cut at the same time. Note that the condition of Theorem 4.3 are
also necessary for identifiability for the special case of tree topologies, such
as the topology in Figure 4.1. We can develop dissemination techniques for
general topologies that satisfy the sufficient conditions given in Theorem 4.3
by using a decentralized rate control strategy. This can be done with almost
no affect on the dissemination rate.

4Note that if ci = min-cut(S, i), ci = min{ĉi, cp}.

4.3. Conclusion and Discussion 35

4.3 Conclusion and Discussion

In this chapter we have shown that (for a class of graphs) one could design
network coding algorithms which reveal topological structure of the graph
while not affecting the dissemination rates. This connection between sub-
spaces of network coded packets and network properties could be useful in
other contexts as well. We have only considered the case where the identifia-
bility occurs at any time during the steady state, and sufficient conditions for
this. If one relaxes this or has further prior information about the network
topology, one could also design other schemes.

36 Chapter 4.

Chapter 5

On Locating Byzantine
Attackers

In a network coded system, the adverserial nodes in the network disrupt
the normal operation of the information flow by inserting erroneous pack-
ets into the network. This can be done by inserting spurious data packets
into their outgoing edges. One way in which these erroneous packets can
be prevented from disrupting information flow is by reducing the transmis-
sion rate to below the min-cut of the network, and using the redundancy
to protect against errors. One such technique, using subspaces to code in-
formation was proposed in [15]. In this approach, the source sends a basis
of the subspace corresponding to the message. In the absence of errors, the
linear operations of the intermediate nodes do not alter the sent subspace,
and hence the receiver decodes the message by collecting the basis of the
transmitted subspace. A malicious attacker inserts vectors that do not be-
long in the transmitted subspace. Therefore, if the message codebook uses
subspaces that are “far enough” apart (according to an appropriately de-
fined distance measure), then one can correct these errors [15]. Note that in
this technique, we do not need any knowledge of the network topology for
the error correction mechanism. All that is needed is that the intermediate
nodes do not alter the transmitted subspace (which can be done if they do
linear operations).

The approach of this chapter to locating adversaries uses the frame-
work developed in the previous chapters, where it was shown that under
randomized network coding, the subspaces at the nodes of the network give
information about the topology. Therefore, the basic premise in this chapter
is to use the structure of the erroneous subspace inserted by the adversary
to reveal information about its location, when we already know the network
topology.

37

38 Chapter 5.

5.1 Problem Formulation

Consider a network represented as a directed acyclic graph G = (V,E). We
have a source, sending information to r receivers, and one (or more) Byzan-
tine adversaries, located at intermediate nodes of the network. We assume
complete knowledge of the network topology, and consider the source and
the receivers to be trustworthy (authenticated) nodes, that are guaranteed
not to be adversaries.

We can restrict the Byzantine attack in several ways, depending on the
edges where the attack is launched, the number of corrupted vectors inserted,
and the vertices (network nodes) that the adversary has access to. In this
chapter we will distinguish between the cases where

I. there is a single Byzantine attacker located in a vertex of the network,
and

II. there are multiple independent attackers, located on different vertices,
that act without coordinating with each other.

Moreover, we will consider the cases where, an attacker located on a single
vertex inserts corrupted packets on

(a) exactly one of the vertex outgoing edges,

(b) all the outgoing edges, or

(c) a subset of the outgoing edges.

We are interested in understanding under what conditions we can uniquely
identify the attacker’s location (or, up to what uncertainty we can identify
the attacker), under the above scenarios.

5.2 Basic Properties

In this section, we will use the subspace model introduced in the Section 2.4
to find the basic properties of subspace in the presence of adversaries in the
network.

Suppose source S sends n vectors, that span a n-dimensional subspace
ΠS of space W , where W is defined over a finite field Fq, with q / 1. In
particular, ΠS belong to a codebook C, ΠS ∈ C, which is designed to correct
network errors [15].

In the absence of any erasures or adversaries in the network each receiver
R collects the exact space ΠS . Now assume that there is an adversary
who attacks one of the nodes in the network by combining a t-dimensional
subspace ΠE with its incoming space and sending the resulting vectors to

5.2. Basic Properties 39

its children. In addition we will assume that t < n. Then receiver R collects
n ≤ m ≤ n + t innovative vectors that span a subspace ΠR. We may write

ΠR = Hm(ΠS ∪ΠE),

where Hm is the erasure operator defined in Section 2.4. The operator
Hm depends on the topology of the network and the code that used in the
network. This is a general model which includes all class of linear network
coding senario, but as stated in Section 2.4, if nodes in the network perform
random network coding, Hm has some random structure.

We assume that the receiver is able to at least detect that a Byzantine
attack is under way. Moreover, we assume that the receiver is able to decode
the subspace ΠS that the source has sent. This might be, either because the
receiver has correctly decoded the sent message, or, because after detecting
the presence of an attack has requested the source subspace through a secure
channel from the source node.

Here, based on the model introduce above, we investigate how the in-
sertion of the error subspace ΠE affects the subspaces that the intermediate
network nodes observe.

We can write the received subspace at arbitrary node i the same way as
we did for the receiver R,

Πi = Hi
m(ΠS ∪ΠE).

Then it is possible to expand Πi as follows,

Πi = Π̂Si ⊕ (Π̂Ei ⊕ Π̂i)︸ ︷︷ ︸
Π"

i

= Π̂Si ⊕Π%
i , (5.1)

where ⊕ denotes the direct sum of spaces, Π̂Si ! Πi ∩ ΠS ⊆ ΠS , Π̂Ei !
Πi ∩ΠE ⊆ ΠE and Π̂i is the rest of Πi which cannot be represented as just
part of ΠS or ΠE . We underline that in general Π%

i ! ΠE.
If the operator Hi

m selects Πi uniformly at random, with high probability
we will have

dim(Π̂Si) = m− t, dim(Π̂Ei) = m− n,

dim(Π̂i) = t− (m− n).

The above results are a direct consequence of Corollary 3.1, and provide a
lower bound for these dimensions in the general case. Using again Corol-
lary 3.1, for two arbitrary nodes i and j, and without any further assump-
tions, we have the following inequalities

dim(Πi ∩Πj) ≥ 2m− (n + t)
= (m− t) + (m− n),

40 Chapter 5.

and

dim(Π̂Si ∩ Π̂Sj) ≥ 2(m− t)− n

= 2(m− n) + (n− 2t).

Lemma 5.1. In the above scenario, two arbitrary node i and j in the net-
work should gather m > n+t/2 innovative vectors to have dim(Π%

i ∩Π%
j) > 0.

Proof. From Corollary 3.1 we can write

dim(Π̂Ei ∩ Π̂Ej) ≥ 2(m− n)− t.

So if we have n + t/2 < m, the two subspaces Π%
i = Π̂Ei ⊕ Π̂i and Π%

j =
Π̂Ej ⊕ Π̂j have nonzero intersection.

Thus we conclude that, if an adversary introduces ΠE , and intermediate
nodes perform randomized network coding, it is not necessary that the nodes
collecting corrupted information will collect a subspace of ΠE. Additionally,
two nodes that collect corrupted information, may only have as common
information a subspace of ΠS , unless they collect a sufficient number of
innovative packets.

5.3 The Case of a Single Adversary

In this section we focus on the case where we want to locate a Byzantine
adversary controlling a single vertex of the network graph. We will develop
methods which are suitable for the cases where the adversary corrupts one
edge, all edges, or a subset of its out-going edges (cases (a), (b), (c) respec-
tively of Section 5.1.

In Section 5.3.1 we illustrate the limitation of using only the information
the receivers have observed along with the knowledge of the topology, to
locate the adversary. This motivates requiring additional information from
the intermediate nodes related to the subspaces observed by them. In Sec-
tion 5.3.2, we show that such additional information allows us to localize
the adversary either uniquely or within an ambiguity of at most two nodes.

5.3.1 Identification using only Topological Information

In order to illustrate the ideas, we will first examine the case where the
corrupted packets are inserted on a single edge of the network, say edge eA.
This corresponds to case (a) in Section 5.1. The extension to cases (b) and
(c) is straightforward.

Since each receiver R knows the subspaces {Π(i)
R } it has received from

its In(R) parents, it knows whether what it received is corrupted or not (a
subspace of ΠS or not). Using this, we can infer some information regarding
topological properties that the edge eA should satisfy. In particular:

5.3. The Case of a Single Adversary 41

• If R receives corrupted vectors from an incoming edge e then there
exists at least one path that connects eA to e. Let Pe denote the set
of paths1 starting from the source and ending at edge e. Then eA is
part of at least one path in Pe.

• Conversely, if a receiver R does not receive corrupted packets from an
incoming edge e, then eA does not form part of any path in Pe. That
is, there does not exist a path that connects eA to e.

Then, if E1 is the set of incoming edges to receivers that bring corrupted
packets, while E2 the set of incoming edges to receivers that only bring source
information, the edge eA belongs in the set of edges EA, with

EA ! {
⋂

e∈E1

Pe −
⋃

e∈E2

Pe},

where A− B denotes the set where elements in B are removed from the set
A. The following example illustrates this approach.

Example 5.1. Consider the network in Figure 5.1, and assume that R1

receives corrupted packets from edge DR1 and uncorrupted packets from
AR1, while R2 receives only uncorrupted packets. Then EA = {DR1} and

S

A

B

C

DR1 R2

Figure 5.1: The source S distributes packets to receivers R1 and R2.

the attacker is located on node D. "

In Example 5.1, we were able to exactly identify the location of the
adversary, because the set EA contained a single edge, and node R1 is trust-
worthy. It is easy to find network configurations where EA contains multiple
edges, or in fact all the network edges, and thus we can no longer identify
the attacker. The following example illustrates one such case.

1In the following we are going to equivalently think of Pe as the set of all edges that
take part in these paths.

42 Chapter 5.

Example 5.2. Consider the line network shown in Figure 5.2. Suppose the
attacker is node A. If the receiver R sees a corrupted packet, then using
just the topology, the attacker could be any of the other nodes in the line
network. This illustrates that just the topology and receiver information
could lead to large ambiguity in the location of the attacker. "

Therefore, Example 5.2 motivates the ideas examined in Section 5.3.2
which obtain additional information and utilize the structural properties of
the subspaces observed.

5.3.2 Identification using Information from all Network Nodes

We will next discuss algorithms where a central authority, which we will call
controller, requests from all nodes in the network to report some additional
information, related to the subspaces they have received from their parents.
The adversary could send inaccurate information to the controller, but the
other nodes report the information accurately. Our task is to design the
question to the nodes such that we can locate the adversary, despite its
possible misdirection.

The controller may ask the nodes of the following types of information,
listed in decreasing order of complexity:

Information 1: Each node v sends all subspaces Π(i)
v it has received

from its parents, where Πv = ∪In(v)
i=1 Π(i)

v .

Information 2: Each node v sends a randomly chosen vector from each
of the received subspaces Π(i)

v (In(v) vectors in total).

Information 3: Each node v sends one randomly chosen vector from
its subspace Πv.

Information 2 and 3 is motivated by the following well-known observa-
tion, see Lemma 3.3: let Π1 and Π2 be two subspaces of Fn

q , and assume
that we randomly select a vector y from Π1. Then, for q / 1, y ∈ Π2 if and
only if Π1 ⊆ Π2. Thus, a randomly selected vector from Πv (Information 3)
allows to check whether Πv ⊆ ΠS or not.

In fact, we will show in this section that for a single adversary it is suffi-
cient to use 2 Information 2, and classify the edges of the network by simply
testing whether the information flowing through each edge is a subspace of
ΠS or not (i.e., is corrupted or not).

2Using Information 2 or 3 these statements are made with high probability, i.e., the
probability goes to one as field size q → ∞.

5.3. The Case of a Single Adversary 43

The Line Network

To build the intuition behind our approach, we first examine the case of
the line network, depicted in Figure 5.2, that corresponds to a single path
connecting the source to the receiver. We saw in Example 5.2, that just
topological information was insufficient to reduce ambiguity of the attacker’s
location. For the line network, cases (a), (b), (c) in Section 5.1 coincide.

S A B C D R

Figure 5.2: The source S sends information to receiver R over a
line network.

Assume now that the controller asks for Information 1, i.e., all nodes
to report their collected subspaces to the controller. The adversary has two
courses of action: it can either correctly report the subspace it received from
its parent node, or lie, and claim that it received a corrupted subspace from
its parent. We do not know which of the two approaches the adversary has
selected. However, in both cases, we can divide the network edges into two
sets, the set of edges through which is reported to flow correct information,
and the set of edges through which is reported to flow corrupted information.

For example, if the adversary is node C in Figure 5.2, the sets corre-
sponding to the possible adversary actions are depicted in Figure 5.3(i) and
5.3(ii) respectively. It is clear that the adversary is one of the two nodes
connecting the edge on the border of the sets, that is, in the set of vertices
{C, D} for the case in Figure 5.3(i), and in the set {B, C} for the case in
Figure 5.3(ii). In particular, the adversary is one of the two adjoining nodes,
of the first ancestral reported corrupted edge.

Note that we can divide the edges in these two sets simply using Infor-
mation 2 or 3 (these coincide for the line network) since it is sufficient to
check whether each edge is corrupted.

Also note that networks where all nodes have out-degree one and arbi-
trary in-degree, can be treated in exactly the same way as the line network.
Indeed, the identification in such networks can be, without loss of generality,
decomposed in identification along single paths.

General Networks

Consider a directed acyclic graph, and assume that we impose a partial order
on the edges of the graph, such that e1 > e2 if e1 is an ancestor edge of e2

(i.e., there exists a path from e1 to e2).

44 Chapter 5.

(i) S A B C D R

(ii) S A B C D R

Figure 5.3: Case (i): edge partition if the adversary node C
reports the truth, and Case (ii): edge partition if the adversary

node C lies. Edges bringing corrupted information are depicted as
dashed.

Following a similar approach to Section 5.3.2-1), and using Information 2,
we divide the edges of the network into two sets: the set of edges EC through
which are reported to flow corrupted subspaces, and the remaining edges ES

through which the source information flows. Note that all the outgoing edges
from the source belong in ES , while the receiver observes at least one edge
in EC .

Consider case (a), where the adversary corrupts a single edge. Clearly,
since there exists a single adversary, EC forms a connected subgraph. Let
eA be highest order edge in this graph, i.e., eA > e for all e ∈ EC . Then,
similarly to the case of the line network, the adversary is one of the two
nodes adjacent to this edge. We can make similar arguments for cases (b)
and (c). This leads to the following lemma.

Lemma 5.2. Using Information 1 we can narrow the location of the adver-
sary up to a set of at most two nodes. With Information 2, the same result
holds with high probability.

v1

v2

u

wt

eA

e1

e2e3

Figure 5.4: Edge eA and neighboring edges-nodes.

5.4. The Case of Multiple Adversaries 45

In fact, in some cases, we are able to uniquely identify the malicious
attacker, as described by the following lemma.

Lemma 5.3. If eA connects vertex v1 to vertex v2, and if vertices v1 and
v2 have outdegree greater or equal to two, then we can uniquely identify3 the
attacker in cases (a) and (b) of Section 5.1.

Proof. The proof is based on the fact that only a single node can lie. Thus
we know that every other node, apart from v1 or v2, is trustworthy. Let e1,
e2 and e3 be outgoing edges of vertex v1 and v2 as depicted in Figure 5.4.

• Case (a) (the adversary corrupts a single edge): If e2 and e3 are cor-
rupted, the adversary can be only located on vertex v1, while if only
one of them is corrupted, the adversary is located on v2.

• Case (b) (the adversary corrupts all its outgoing edges): If e1 is cor-
rupted, the adversary is located on vertex v1, and otherwise on v2.

5.4 The Case of Multiple Adversaries

In the case of a single adversary, it was sufficient to divide the set of edges
into two sets, ES and EC , as described in the previous section. In the pres-
ence of multiple adversaries, this may no longer be sufficient. An additional
dimension is that realistically, we may not know the exact number of ad-
versaries present. In the following, we discuss a number of algorithms, that
offer more or less identifiability guarantees.

5.4.1 Identification using Topological Information

The approach in Section 5.3.1 can be directly extended in the case of multiple
adversaries, but again, offers no identifiability guarantees.

Example 5.3. Consider again the network in Figure 5.1, and assume that
R1 receives corrupted packets only from edge DR1 while R2 receives cor-
rupted packets only from edge DR2. Then EA = {AD,CD,DR1,DR2} and
(depending on our assumptions) we may have,

- a single adversary located on node D,

- two adversaries, located on nodes A and C,

- two adversaries, located on nodes A and D, or nodes C and D, or

- three adversaries, located on nodes A, C, and D.

"
3Again, this occurs w.h.p. for Information 2 and 3.

46 Chapter 5.

5.4.2 Identification using Information 2

Similarly to Section 5.3.2, we can divide the set of edges into two sets ES

and EC , depending on whether the information flowing through each edge
belongs in ΠS or not. Depending on the network topology, we may be able
to uniquely identify the location of the attackers. However, this approach,
although it guarantees to find at least one of the attackers (within an un-
certainty of at most two nodes), does not necessarily find all the attackers,
even if we know their exact number.

Intuitively, this is because an attacker might be “in the shadow” of an-
other attacker, meaning that, it may corrupt only already corrupted vectors
and thus not incur a detectable effect. More precisely, we say that node B
is in the shadow of node A, if there exists a path that connects every in-
coming edge of B to a corrupted outgoing edge of A. The following example
illustrates these points.

Example 5.4. For the example in Figure 5.1, assume that each attacker
corrupts all its outgoing edges, and consider the following two situations:

1. Assume that nodes A and C are attackers. If A reports truthfully
while C lies we get EC = {AD,AR1,DR1,DR2, BC,CR2, CD}, which
allows to identify the attackers.

2. Assume that nodes B and D are attackers. Then we say that node D is
in the shadow of node B, as it corrupts only already packets corrupted
by B. Indeed, if EC = {SB,BA,BC,AD,AR1,DR1,DR2, BC,CR2, CD},
knowing that the source is trustworthy, we can infer that node B is an
attacker. However, any of the nodes A, C, and D can equally probably
be the second attacker. All these nodes are in the shadow of node D.

"

5.4.3 Identification using Clustering and Information 1

In this section, we are going to try to explicitly use the knowledge of all the
node’s subspaces, and the model that is introduced in Section 5.2.

Suppose that we have two adversaries A1 and A2 that inject two spaces
ΠE1 and ΠE2 with dimensions t1 and t2 into the network. For simplicity
assume that t1 = t2 = t. Since the adversaries are independent, t relatively
small, and q / 1, we can assume w.h.p. that ΠE1 ∩ΠE2 = 0.

Based on the received spaces, we can attempt to divide the vertices
of the network into four parts, which we will call vertex-clusters. Let us
label these four clusters as VS , V1, V2 and V12. Through cluster VS flows the
source information, through cluster V1 information corrupted by A1, through
cluster V2 information corrupted A2 and through cluster V12 information

5.4. The Case of Multiple Adversaries 47

corrupted by both A1 and A2. Following the notation in Section 5.2, we can
decompose each space as follows,

Πi = Π̂Si ⊕Π%
i .

It is obvious that for node i ∈ VS we have

dim(Π%
i) = 0.

From Lemma 5.1, we know that for two vertices i and j both belonging to
the same cluster V1 (or V2, or V12) we have

dim(Π%
i ∩Π%

j) > 0,

if the number of gathered innovative vectors is sufficiently large. Moreover,
if i belongs to V1 and j to V2 then Π̂i ∩ Π̂j = ∅. Finally, if i belongs to V1

(or V2) and j to V12 we want to have

dim(Π%
i ∩Π%

j) > 0.

Thus, by examining the intersection of the edge subspaces, we can divide
the vertices into two overlapping sets, VA1 and VA2 , where all vertices in VA1

(VA2) have nonzero intersection. Then, V12 = VA1 ∩ VA2 , V1 = VA1 − V12

and V2 = VA2 − V12. Given the partition, we know that the first attacker
belongs in the border of cluster V1 while the second in the border of cluster
V2. Explicitly examining the subspaces on the incoming edges that cross
these two borders allows to identify which of them are corrupted. From the
problem definition, exactly the edges adjacent to nodes are corrupted, which
allows to identify the adversaries.

Note that this approach works when V1 and V2 form distinct clusters
(irrespective of whether V12 exists or not), but again fails, like the previous
algorithm, in the case where the second attacker V2 “belongs” in V1, that is,
only clusters V1 (or V2) and V12 exist. This is because, we will not be able
to identify cluster V12.

5.4.4 Identification using Subset Relationships

For each node i ∈ V , let P (i) = {u1, · · · , upi} denote the set of parent nodes
of i. We are going to treat P (i) as a super node, and use the notation
ΠP (i) = ∪pi

l=1Πul for the union of the subspaces of all nodes in P (i). Also
recall that Π(i)

j denotes the subspace received by node j from node i.
Our last algorithm checks, for every node i, whether

Π(i)
j

?
⊆ ΠP (i) for node j s.t. eij ∈ E.

If this relationship is satisfied, we know that node i is not an adversary. If
the relationship is not satisfied, that is Π(i)

j ! ΠP (i) for at least one of the

48 Chapter 5.

children of i, we know that maybe node i is an adversary. For sure we know
that

Π(A)
j ! ΠP (A) for node j s.t. eAj ∈ E,

but depending on the subspace that the adversary reports, the above relation
may not be satisfied for other nodes.

If the adversary pretends that it is a trustworthy node (just declares
its received subspace from the parents) the above relation also fails for the
children of A who receive corrupted subspaces. On the other hand, if the
adversary tells the truth and declares its whole subspace, we have

Π(i)
A ! ΠP (i) for all parents i of A.

Thus the ambiguity set we have identified includes the adversary and its
parents or children depending on the adversary’s report.

Now it is possible to use the topological information to make the ambi-
guity set smaller. We know that the set contains the adversary and either
its parent or its children. So the potential adversaries are nodes that are
parents or children of all other nodes in the set. If there exists only one such
node in the set we can identify the location of the adversary uniquely.

Repeating this procedure for every node in the network, we can identify
sets of potential adversaries. This procedure allows to identify adversaries,
even if one is in the shadow of another, and even if we do not know their exact
number, provided they are “far enough” in the network to be distinguishable.
More precisely, we have the following lemma, where distance refers to the
length of the shortest path connecting two nodes.

Lemma 5.4. If the pairwise distance between adversaries is greater than
two, it is possible to find the exact number as well as the location of the
attackers (within the described uncertainty of parent-children sets), using
the subset method.

Proof. We know that depending on the adversaries action there exists ambi-
guity in finding their exact location. In fact in the worst case, the uncertainty
is within a set of nodes including the adversary, its parents and its children.
So if the distance between adversaries is greater than two, the “uncertainty”
sets do not overlap. In this case we can easily distinguish between different
adversaries.

5.5 Conclusion and Discussion

Given a network subject to Byzantine attacks, in this chapter we formulated
and examined the problem of locating the adversaries. We showed that in
the case of a single adversary, there exist simple algorithms that allow to
identify the adversary within an uncertainty of two nodes. For the case of

5.5. Conclusion and Discussion 49

multiple adversaries, we discussed a number of algorithms, and conditions
under which we can guarantee identifiability.

50 Chapter 5.

Chapter 6

P2P Topology Management

The performance of peer-to-peer (P2P) networks depends critically on the
good connectivity of the overlay topology. In this chapter we study P2P
networks for content distribution (such as Avalanche) that use randomized
network coding techniques. We will use that fact that the linear combi-
nations a node receives from its neighbors reveal structural information
about the network. We propose algorithms to utilize this observation for
topology management to avoid bottlenecks and clustering in network-coded
P2P systems. The proposed approach is decentralized, inherently adapts
to the network topology, and reduces substantially the number of topology
rewirings that are necessary to maintain a well connected overlay; moreover,
it is integrated in the normal content distribution.

6.1 Description and Motivation

6.1.1 Avalanche Topology Management

In a nutshell, Avalanche relies on periodically renewed random selections for
the peer neighbors to rewire the employed overlay network [13, 14]. In more
detail, the source forms the first node of the overlay network that will be
used for the file distribution. All nodes in this network are connected to a
small number of neighbors (four to eight). Neighbors for each arriving node
are chosen uniformly at random among already participating nodes, which
accept the solicited connection unless they have already reached their max-
imum number of neighbors. Each node keeps local topological information,
namely, the identity of the neighbors it is directly connected to. A special
node called registrat keeps track of the list of active peers. Nodes periodi-
cally drop one neighbor and reconnect to a new one, asking the registrat to
randomly select the new neighbor from the active peers list.

The randomized rewiring Avalanche employs results in a fixed average
number of reconnections per node independently of how good or bad is
the formed network topology. Thus to achieve a good, on the average,

51

52 Chapter 6.

(a)
S

A

B

C

D

(b)

S

A

B

C

D

Figure 6.1: The source S distributes packets to the peers A, B,
C and D over the overlay network (a), that uses the underlying

physical network (b).

performance in terms of breaking clusters, it entails a much larger number
of rewiring and requests to the registrat than required, and unnecessary
topology changes.

Clearly the registrat, since it allocates to each peer its neighbors, could
keep some structural information, i.e., keep track of the current network
topology, and use it to make more educated choices of neighbor allocations.
However, the information the registrat can collect only reflects the over-
lay network topology, and is oblivious to bandwidth constraints from the
underlying physical links. Acquiring bandwidth information for the under-
lying physical links at the registrat requires costly estimation techniques over
large and heterogeneous networks, and steers towards a centralized network
operation. We argue that such bottlenecks can be inferred passively, thus
avoiding these drawbacks.

6.1.2 The Proposed Approach

Our work starts from the observation that the coding vectors the peers
receive from their neighbors can be used to passively infer bottleneck infor-
mation. This allows individual nodes to initiate topology changes to correct
problematic connections. In particular, peers by keeping track of the cod-
ing vectors they receive can detect problems in both the overlay topology
and the underlying physical links. The following example illustrates these
points.

Consider the toy network depicted in Figure 6.1(a) where the edges cor-
respond to logical (overlay network) links. The source S has n packets to
distribute to four peers. Nodes A, B and C are directly connected to the
source S, and also among themselves with logical links, while node D is

6.2. Theoretical Framework 53

connected to nodes A, B and C. In this overlay network, each node has
constant degree three (three neighbors), and there exist three edge-disjoint
paths between any pair of nodes (in particular, between the source and any
other node).

Assume now (as shown in Figure 6.1(b)) that the logical links SA, SB,
SC share the bandwidth of the same underlying physical link, which forms
a bottleneck between the source and the remaining nodes of the network.
As a result, assume the bandwidth on each of these links is only 1/3 of the
bandwidth of the remaining links. The registrat, even if it keeps track of
the complete logical network structure, is oblivious to the existence of the
bottleneck and the asymmetry between the link bandwidths.

Node D however, can infer this information by observing the coding
vectors it receives from its neighbors A, B and C. Indeed, when node A
receives a coded packet from the source, it will forward a linear combination
of the packets it has already collected to nodes B and C and D. Now each
of the nodes B and C, once they receive the packet from node A, they also
attempt to send a coded packet to node D. But these packets will not bring
new information to node D, because they will belong in the linear span of
coding vectors that node D has already received. Similarly, when nodes
B and C receive a new packet from the source, node D will end up being
offered three coded packets, one from each of its neighbors, and only one of
the three will bring to node D new information.

More formally, the coding vectors nodes A, B and C will collect will
effectively span the same subspace; thus the coded packets they will offer to
node D to download will belong in significantly overlapping subspaces and
will thus be redundant (we formalize these intuitive arguments in Section 6.2.
Node D can infer from this passively collected information that there is a
bottleneck between nodes A, B, C and the source, and can thus initiate a
connection change.

6.2 Theoretical Framework

Here we use the same theoretical model that introduced in Section 2.1 and
2.3. For simplicity we will assume that the network is synchronous. By
this we mean that nodes transmit and receive according to a global clock
tick1. Nodes are allowed to transmit linear combinations of their received
packets only at clock ticks, at a rate equal to the adjacent link bandwidth.
We normalize the transmitted rates so that the maximum rate a node can
transmit is 1 packet per timeslot in each of its outgoing edges. A node
transmitting information at a rate 1

k on an outgoing link, sends one coded
packet every k clock ticks.

1This is not essential for the algorithms but simplify the theoretical analysis.

54 Chapter 6.

In addition to the metric Dij defined in Section 2.3, in some cases we
will also need a measure that compares how the subspaces of one cluster of
nodes A differ from the subspaces of another cluster of nodes B. For this
we will use the average pair-wise distance defined as follows

DAB ! 1
|A||B|

∑

i∈A,j∈B
Dij . (6.1)

It should be noted that the above relation does not define a metric for the
clusters of nodes because the self distance of a cluster with itself is not zero
but it satisfies the triangle inequality.

Now we will use the results of Chapter 3 to investigate the information
that we can obtain from the local information of a node’s subspace. From
Section 2.3 we know that for an arbitrary node i we can write

Πi(t) = ∪pi
j=1Π

(uj)
i (t).

We are interested in understanding what information we can infer from these
received subspaces Π(u1)

i , . . . ,Π(upi)
i . For example, the overlap of subspaces

from the neighbors reveals something about a bottleneck. Therefore, we
need to show that such overlaps occur due to topological properties and not
due to particular random linear combinations chosen by the network code.

Let us assume that the subspaces Π(u1)
i , . . . ,Π(upi)

i a node i receives from
its set of neighbors {uj} have an intersection of dimension d. This implies
that, (i) from Corollary 3.1, the subspaces Π(u1)

i , . . . ,Π(upi)
i of the neighbors

have an intersection of size at least d and (ii), from Thorem 3.3, the min-cut
between the set of nodes {uj} and the source is smaller than the min-cut
between the node i and set {uj}. Next we will discuss algorithms that use
such observations for topology management.

6.3 Algorithms

Our peer-initiated algorithms for topology management consist of three
tasks:

1. Each peer decides whether it is satisfied with its connection or not,
using a decision criterion.

2. An unsatisfied peer sends a rewiring request, that can contain different
levels of information, either directly to the registrat, or to its neighbors
(these are the only nodes the peer can communicate with).

3. Finally, the registrat, having received rewiring requests, allocates neigh-
bors to nodes to be reconnected.

6.3. Algorithms 55

The decision criterion can capitalize on the fact that overlapping received
subspaces indicate an opportunity for improvement. For example, a node
can decide it is not satisfied with a particular neighbor, if it receives k > 0,
non-innovative coding vectors from it, where k is a parameter to be decided.
The first algorithm we propose (Algorithm 1) uses this decision criterion;
it then has each unsatisfied node directly contact the registrat and specify
the neighbor it would like to change. The registrat randomly selects a new
neighbor. This algorithm, as we demonstrate through simulation results,
may lead to more rewirings than necessary: indeed, all nodes inside a cluster
may attempt to change their neighbors, while it would have been sufficient
for a fraction of them to do so.

Our second algorithm (Algorithm 2) uses a different decision criterion:
for every two neighbors i and j, each peer computes the rate at which the
received joint space Π̂i ∪ Π̂j and intersection space Π̂i ∩ Π̂j increases. If the
ratio between these two rates becomes greater than a threshold T , the node
decides it would like to change one of the two neighbors. However, instead of
directly contacting the registrat, it uses a decentralized voting method that
attempts to further reduce the number of re-connections. A node unsatisfied
with a particular neighbor sends a request to this neighbor indicating so.
Every node collects all such requests it receives, and only after it collects
a certain number ∆ of them, it sends a request to the registrat requesting
to be rewired. The registrat then randomly selects and allocates one new
neighbor.

Our last proposed algorithm (Algorithm 3), while still peer-initiated
and decentralized, relies more than the two previous ones in the computa-
tional capabilities of the registrat, and is specifically targeted to breaking
topological clusters. The basic observation is that, nodes in the same cluster
will not only receive overlapping subspaces from their parents, but moreover,
they will end up collecting subspaces with very small distance (this follows
from Theorem 3.3 and Corollary 3.1 and is also illustrated through simula-
tion results in Section 6.4). Each unsatisfied peer i sends a rewiring request
to the registrat, indicating to the registrat the subspace Πi it has collected.
A peer can decide it is not satisfied using for example the same criterion as
in Algorithm 2.

The registrat waits for a short time period, to collect requests from a
number of dissatisfied nodes. These are the nodes of the network that have
detected they are inside clusters. It then calculates the distance between the
identified subspaces to decide which peers belong in the same cluster. While
exact such calculations can be computationally demanding, in practice, the
registrat can use one of the many hashing algorithms to efficiently do so.
Finally the registrat breaks the clusters by rewiring a small number of nodes
in each cluster. The allocated new neighbors are either nodes that belong
in different clusters, or, nodes that have not send a rewiring request at all.

56 Chapter 6.

We will compare our algorithms against the Random Rewiring cur-
rently employed by Avalanche. In this algorithm, each time a peer receives
a packet, with probability p contacts the registrat and asks to change a
neighbor. The registrat randomly selects which neighbor to change, and
randomly allocates a new neighbor from the active peer nodes.

1

23

4

5

6

7
8

9
10

11
12

13

14

15

16

17

18 19

20

2122

23 24

25

26
27

28

29

30

Topolog of a network with 3 clusters.

Figure 6.2: Topology with three clusters: cluster 1 contains nodes
1–10, cluster 2 nodes 11–20 and cluster 3 nodes 21–30.

6.4 Simulation Results

For our simulation results we will start from the topology illustrated in
Figure 6.2, that consists of 30 nodes connected into three distinct clusters.
The source is node 1, and belongs in the first cluster. The bottleneck links
are indicated with arrows (and thus indicate the underlying physical link
structure). Our first set of simulation results depicted in Figure 6.3 show
that the subspaces within each cluster are very similar, while the subspaces
across clusters are significantly different, where we use the distance measure
in (6.1). Note that, the smaller the bottleneck, the larger the “similarity”
of subspaces within the same cluster, and also, the larger the difference
across clusters. These results indicate for example that knowledge of these
subspaces will allow the registrat to accurately detect and break clusters
(Algorithm 3).

Our second set of simulation results considers again a topology with three
clusters: cluster 1 has 15 nodes and contains the source, cluster 2 has also

6.4. Simulation Results 57

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

Time (Round)

Av
er

ag
e

D
is

ta
nc

e

Average distance between clusters, links that connect clusters have capacity 0.1

Dst(1,1)
Dst(1,2)
Dst(1,3)
Dst(2,2)
Dst(2,3)
Dst(3,3)

(1,2)

(1,3)

(1,1)
(2,3)

(2,2) (3,3)

0 5 10 15 20 25 30 35 40
0

5

10

15

Time (Round)

Av
er

ag
e

D
is

ta
nc

e

Average distance between clusters, links that connect clusters have capacity 0.5

Dst(1,1)
Dst(1,2)
Dst(1,3)
Dst(2,2)
Dst(2,3)
Dst(3,3)

(2,3)

(2,2)

(1,3)

(1,2)

(1,1)

(3,3)

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

Time (Round)

Av
er

ag
e

D
is

ta
nc

e

Average distance between clusters, links that connect clusters have capacity 1

Dst(1,1)
Dst(1,2)
Dst(1,3)
Dst(2,2)
Dst(2,3)
Dst(3,3)

(2,3)

(2,2)

(1,2)

(3,3)

(1,1)

(1,3)

Figure 6.3: Simulation results for the topology in Figure 6.2, with
bottleneck link capacity values equal to 0.1 (top), 0.5 (middle)

and 1 (bottom).

58 Chapter 6.

15 nodes, while the number of nodes in cluster 3 increases from 15 to 250.
During the simulations we assume that the registrat keep the nodes’ degree
between 2 and 5, with an average degree of 3.5. All edges correspond to
unit capacity links. An experiment terminates once all peers have collected
all packets. The values presented are averaged over 10 experiments, where
in each experiment the source sends 50 packets to the peers.

We compare the performance of the three proposed algorithms in Sec-
tion 6.3 with random rewiring, currently employed by Avalanche. We imple-
mented these algorithms as follows. For random rewiring, every time a node
receives a packet it changes one of its neighbors with probability p = 8

500 .
For Algorithm 1, we use a parameter of k = 10, and check whether the
non-innovative packets received exceed this value every four received pack-
ets. For Algorithm 2, every node checks each received subspaces every four
received packets using the threshold value T = 1. Nodes that receive ∆ = 2
or more rewiring requests contact the registrat. Finally for Algorithm 3,
we assume that nodes use the same criterion as in Algorithm 2 to decide
whether they form part of a cluster, again with T = 1. Dissatisfied node
send their observed subspaces to the registrat. The registrat assigns nodes
i and j in the same cluster if Dij ≤ 7, where Dij is defined in Section 2.3.

Table 6.1 compares all algorithms with respect to the average collection
time, defined as the difference between the time a peer receives the first
packet and the time it can decode all packets, and averaged over all peers.
All algorithms perform similarly, indicating that all algorithms result in
breaking the clusters. It is important to note that these average collection
times is in terms of number of exchanges needed and does not account for the
delays incurred due to rewiring. We compare the number of such rewirings
needed next.

Figure 6.4 plots the average number of rewirings each algorithm employs.
Random rewiring incurs a number of rewirings proportional to the number
of P2P nodes, and independently from the underlying network topology.
Our proposed algorithms on the other hand, adapt to the existence and size
of clusters. Algorithm 3 leads to the smallest number of rewirings. Algo-
rithm 2 leads to a larger number of rewirings, partly due to that the new
neighbors are chosen randomly and not in a manner that necessarily breaks
the clusters. The behavior of algorithm 1 is interesting. This algorithm
rewires any node that has received more than k non-innovative packets.
Consider cluster 3, whose size we increase for the simulations. If k is small
with respect to the cluster size, then a large number of nodes will collect
close to k non-innovative packets; thus a large number of nodes will ask for
rewirings. Moreover, even after rewirings that break the cluster occur, some
nodes will still collect linearly dependent information and ask for additional
rewirings. As cluster 3 increases in size, the information disseminates more
slowly within the cluster. Nodes in the border, close to the bottleneck links,
will now be the ones to first ask for rewirings, long before other nodes in

6.5. Conclusion and Discussion 59

the network collect a large number of non-innovative packets. Thus once
the clusters are broken, no new rewirings will be requested. This desirable
behavior of Algorithm 1 manifests itself for large clusters; for small clus-
ters, such as cluster 2, the second algorithm for example achieves a better
performance using less reconnections.

50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

Total number of P2P nodes

Av
er

ag
e

nu
m

be
r o

f r
ew

iri
ng

s

Random
Algo1
Algo2
Algo3

Figure 6.4: Average number of rewirings, for a topology with
three clusters: cluster 1 has 15 nodes, cluster 2 has 15 nodes,

while the number of nodes in cluster 3 increases from 20 to 250 as
described in Table 1.

Table 6.1: Average Collection Time

Topology Random Algo 1 Algo 2 Algo 3
15–15–20 20.98 22.14 20.57 20.39
15–15–40 18.72 21.13 19.36 19.47
15–15–70 18.88 21.54 18.97 19.54
15–15–100 18.6 21.48 18.91 21.42
15–15–150 19.56 20.85 19.96 20.18
15–15–250 18.79 19.8 19.18 18.99

6.5 Conclusion and Discussion

In this chapter we observed that, in a P2P network utilizing network coding
the linear combinations a peer receives from its neighbors unravel structural

60 Chapter 6.

information about the network topology. We propose methods to capital-
ize on this fact for passive inference of network characteristics, and peer-
initiated overlay topology management.

Conclusions and Discussion

In this work we explored the properties of subspaces each node collects in
networks employ randomized network coding and found that there exists
relations between the structure of the network and these properties. This
observation led us to use these relations to propose different applications.

As the first application, we studied the conditions a network should sat-
isfy to allow us passively infer the network topology. We showed that these
conditions are not very restrictive and hold for a general class of graphs. Our
future work includes proposing a disseminating protocol which applies rate
control on the information flow that allow us to infer the network topology
for all graphs.

Continuing the previous work, we investigated the relation between the
bottlenecks in the network and the subspace received at a specific node.
Then we emploied this observation and proposed decentralized algorithms
for the rewiring between nodes to facilitate to flow of information in the
network.

For the last application, we focused on locating the Byzantine attackers
in the network. We studied and formulated problem and found that for
the single adversary we can identify the adversary within an uncertainty of
two nodes. For the case of multiple adversaries, we discussed a number of
algorithms, and conditions under which we can guarantee identifiability. For
the future work, we are interested in particular in developing decentralized
algorithms, where nodes are willing to cooperate (exchange messages or
certificates with their neighbors) and identify the Byzantine attacker in a
distributed manner (without the use of a centralizer controller).

The applicatins studied in the previous chapters show additional advan-
tages of the randomized network coding. These are just a few examples and
we believe that there exists a lot more applications that can use the idea of
this work.

61

62 Chapter 6.

Bibliography

[1] R. Ahlswede, N. Cai, S-Y. R. Li, and R. W. Yeung, “Network information
flow”, IEEE Transactions on Information Theory, Vol. 46, pp. 1204–
1216, Jul. 2000.

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai., “Linear network coding”, IEEE
Transactions on Information Theory, 49:371-381, 2003.

[3] R. Koetter, M. Medard, “An Algebraic Approach to Network Coding”,
Transactions on Networking, Oct. 2003.

[4] T. Ho, R. Kötter, M. Médard, M. Effros, J. Shi, and D. Karger, “A ran-
dom linear network coding approach to multicast”, IEEE Transactions
on Information Theory, Vol. 52, pp. 4413-4430, Oct. 2006.

[5] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding”, Allerton,
Monticello, IL, Oct. 2003.

[6] T. Ho, R. Koetter, M. Medard, D. Karger and M. Effros, “The Benefits
of Coding over Routing in a Randomized Setting”, IEEE International
Symposium on Information Theory, 2003.

[7] C. Fragouli and A. Markopoulou, “A network coding approach to overlay
network monitoring”, Allerton, Oct. 2005.

[8] C. Fragouli, A. Markopoulou, and S. Diggavi, “Active topology inference
using network coding”, Allerton, Oct. 2006.

[9] M. Jafarisiavoshani, C. Fragouli, and S N. Diggavi, “Subspace properties
of randomized network coding”, IEEE Information Theory Workshop,
pp 17–21, Bergen, Norway, Jul. 2007.

[10] M. Jafarisiavoshani, C. Fragouli, S N. Diggavi, and C. Gkantsidis “Bot-
tleneck discovery and overlay management in network coded peer-to-peer
systems”, ACM SIGCOMM Workshop on Internet Network Manage-
ment, Kyoto, Japan, Aug. 2007.

[11] R. Koetter, M. Mdard, “Beyond Routing: An Algebraic Approach to
Network Coding”, IEEE Infocom, 2002.

63

64 BIBLIOGRAPHY

[12] T. Ho, B. Leong, Y. Chang, Y. Wen and R. Kötter, “Network moni-
toring in multicast networks using network coding”, IEEE International
Symposium on Information Theory, Jun. 2005.

[13] C. Gkantsidis and P. Rodriguez, “Network coding for large scale content
distribution”, IEEE Infocom, Mar. 2005.

[14] C. Gkantsidis, J. Miller, P. Rodriguez, “Comprehensive view of a live
network coding P2P system”, ACM SIGCOMM/USENIX IMC, 2006.

[15] R. Koetter and F. Kschischang, “Coding for errors and erasures in ran-
dom network coding”, IEEE International Symposium on Information
Theory, Jun. 2007.

[16] L. Babai and P. Frankl, “Linear Algebra Methods in Combinatorics”,
preliminary version, University of Chicago.

[17] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard, “Re-
silient network coding in the presence of byzantine adversaries,” IEEE
Infocom, pp. 616–624, 2007.

[18] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. Karger,
“Byzantine modification detection in multicast networks using random-
ized network coding”, IEEE International Symposium of Information
Theory, Jun. 2004.

[19] R. W. Yeung and N. Cai, “Network error correction, i: basic concepts
and upper bounds,” Communication and Information System, Vol. 6,
pp. 19–35, 2006.

[20] N. Cai and R. W. Yeung, “Network error correction, ii: lower bounds,”
Communication and Information System, Vol. 6, pp. 37–54, 2006.

[21] Z. Zhang, “Network error correction coding in packetized networks,”
Information Theory Workshop, Oct. 2006.

[22] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and
L. Tolhuizen, “Polynomial time algorithms for multicast network code
construction”, IEEE Transactions on Information Theory, Jul. 2003.

[23] “RON: Resilient Overlay Networks”, available at
http://nms.csail.mit.edu/ron.

